935 resultados para Random Walk Models
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
By appealing to renewal theory we determine the equations that the mean exit time of a continuous-time random walk with drift satisfies both when the present coincides with a jump instant or when it does not. Particular attention is paid to the corrections ensuing from the non-Markovian nature of the process. We show that when drift and jumps have the same sign the relevant integral equations can be solved in closed form. The case when holding times have the classical Erlang distribution is considered in detail.
Resumo:
We present a model for transport in multiply scattering media based on a three-dimensional generalization of the persistent random walk. The model assumes that photons move along directions that are parallel to the axes. Although this hypothesis is not realistic, it allows us to solve exactly the problem of multiple scattering propagation in a thin slab. Among other quantities, the transmission probability and the mean transmission time can be calculated exactly. Besides being completely solvable, the model could be used as a benchmark for approximation schemes to multiple light scattering.
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
The purpose of the thesis is to analyze whether the returns of general stock market indices of Estonia, Latvia and Lithuania follow the random walk hypothesis (RWH), and in addition, whether they are consistent with the weak-form efficiency criterion. Also the existence of the day-of-the-week anomaly is examined in the same regional markets. The data consists of daily closing quotes of the OMX Tallinn, Riga and Vilnius total return indices for the sample period from January 3, 2000 to August 28, 2009. Moreover, the full sample period is also divided into two sub-periods. The RWH is tested by applying three quantitative methods (i.e. the Augmented Dickey-Fuller unit root test, serial correlation test and non-parametric runs test). Ordinary Least Squares (OLS) regression with dummy variables is employed to detect the day-of-the-week anomalies. The random walk hypothesis (RWH) is rejected in the Estonian and Lithuanian stock markets. The Latvian stock market exhibits more efficient behaviour, although some evidence of inefficiency is also found, mostly during the first sub-period from 2000 to 2004. Day-of-the-week anomalies are detected on every stock market examined, though no longer during the later sub-period.
Resumo:
Rapport de recherche présenté à la Faculté des arts et des sciences en vue de l'obtention du grade de Maîtrise en sciences économiques.
Resumo:
One comes across directions as the observations in a number of situations. The first inferential question that one should answer when dealing with such data is, “Are they isotropic or uniformly distributed?” The answer to this question goes back in history which we shall retrace a bit and provide an exact and approximate solution to this so-called “Pearson’s Random Walk” problem.
Resumo:
The author studies random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabilities are given. A necessary and sufficient condition for the existence of the variance is given, together with heuristics to be used in practical cases. The optimal probabilities are also found for the case when one is interested in the whole scene, and are equal to the reflectivities
Resumo:
The author studies the error and complexity of the discrete random walk Monte Carlo technique for radiosity, using both the shooting and gathering methods. The author shows that the shooting method exhibits a lower complexity than the gathering one, and under some constraints, it has a linear complexity. This is an improvement over a previous result that pointed to an O(n log n) complexity. The author gives and compares three unbiased estimators for each method, and obtains closed forms and bounds for their variances. The author also bounds the expected value of the mean square error (MSE). Some of the results obtained are also shown
Resumo:
The problem of calculating the probability of error in a DS/SSMA system has been extensively studied for more than two decades. When random sequences are employed some conditioning must be done before the application of the central limit theorem is attempted, leading to a Gaussian distribution. The authors seek to characterise the multiple access interference as a random-walk with a random number of steps, for random and deterministic sequences. Using results from random-walk theory, they model the interference as a K-distributed random variable and use it to calculate the probability of error in the form of a series, for a DS/SSMA system with a coherent correlation receiver and BPSK modulation under Gaussian noise. The asymptotic properties of the proposed distribution agree with other analyses. This is, to the best of the authors' knowledge, the first attempt to propose a non-Gaussian distribution for the interference. The modelling can be extended to consider multipath fading and general modulation
Resumo:
We consider random generalizations of a quantum model of infinite range introduced by Emch and Radin. The generalizations allow a neat extension from the class l (1) of absolutely summable lattice potentials to the optimal class l (2) of square summable potentials first considered by Khanin and Sinai and generalised by van Enter and van Hemmen. The approach to equilibrium in the case of a Gaussian distribution is proved to be faster than for a Bernoulli distribution for both short-range and long-range lattice potentials. While exponential decay to equilibrium is excluded in the nonrandom l (1) case, it is proved to occur for both short and long range potentials for Gaussian distributions, and for potentials of class l (2) in the Bernoulli case. Open problems are discussed.
Resumo:
Random effect models have been widely applied in many fields of research. However, models with uncertain design matrices for random effects have been little investigated before. In some applications with such problems, an expectation method has been used for simplicity. This method does not include the extra information of uncertainty in the design matrix is not included. The closed solution for this problem is generally difficult to attain. We therefore propose an two-step algorithm for estimating the parameters, especially the variance components in the model. The implementation is based on Monte Carlo approximation and a Newton-Raphson-based EM algorithm. As an example, a simulated genetics dataset was analyzed. The results showed that the proportion of the total variance explained by the random effects was accurately estimated, which was highly underestimated by the expectation method. By introducing heuristic search and optimization methods, the algorithm can possibly be developed to infer the 'model-based' best design matrix and the corresponding best estimates.
Resumo:
Durante muitos anos uma controversa questão tem ocupado tanto os discursos acadêmicos quanto os financeiros. O problema a ser resolvido diz respeito à evolução passada dos preços das ações e se tal evolução poderia ser utilizada para prever o comportamento dos preços futuros dessas ações.