964 resultados para Rail Crack Incidents
Resumo:
In Spain, crack cocaine use is silently increasing. In Barcelona, an intentional sample was selected to describe the general characteristics of this consumption. Participants were submitted to an interview and data were analyzed through qualitative research procedures. Users are young males and of low socioeconomic status and formal education. The major pattern of use is compulsive. Illegal income activities are the choice for crack cocaine or money acquisition, increasing individual and social health costs. Polydrug use is a matter of concern. Although these findings can not be generalized, they should be considered for the development of public policies to adequately address crack cocaine users` needs.
Resumo:
Smoked cocaine (crack cocaine) causes several forms of injury to the respiratory tract, including asthma exacerbations, lung edema and hemorrhage, and nasal mucosal alterations. Few studies, however, have assessed respiratory tract pathology in habitual users of crack cocaine. Here, we describe the histological alterations in the respiratory tract of mice caused by chronic inhalation of crack cocaine. Twenty 2-month-old BALB/c mice were exposed to the smoke of 5 g crack cocaine in an inhalation chamber once a day for two months and compared to controls (n = 10). We then morphometrically analyzed nose and bronchiolar epithelial alterations, bronchiolar and alveolar macrophage cell density, alveolar hemosiderin content, and in addition determined the vasoconstriction index and the wall thickness of pulmonary arteries. The serum cocaine level was 212.5 ng/mL after a single inhalation. The mucus content of the nasal epithelium increased in crack-exposed animals, and the nasal and bronchial epithelium thickness decreased significantly. The alveolar hemosiderin content and the alveolar and bronchiolar macrophage cell density increased in animals exposed to crack. The vasoconstriction index increased in the pulmonary arteries of the exposed group. Chronic crack cocaine inhalation causes extensive histological changes along the entire respiratory tract.
Resumo:
Objective. To determine the slow crack growth (SCG) and Weibull parameters of five dental ceramics: a vitreous porcelain (V), a leucite-based porcelain (D), a leucite-based glass-ceramic (E1), a lithium disilicate glass-ceramic (E2) and a glass-infiltrated alumina composite (IC). Methods. Eighty disks (empty set 12mm x 1.1mm thick) of each material were constructed according to manufacturers` recommendations and polished. The stress corrosion susceptibility coefficient (n) was obtained by dynamic fatigue test, and specimens were tested in biaxial flexure at five stress rates immersed in artificial saliva at 37 degrees C. Weibull parameters were calculated for the 30 specimens tested at 1MPa/s in artificial saliva at 37 degrees C. The 80 specimens were distributed as follows: 10 for each stress rate (10(-2), 10(-1), 10(1), 10(2) MPa/s), 10 for inert strength (10(2) MPa/s, silicon oil) and 30 for 10(0) MPa/s. Fractographic analysis was also performed to investigate the fracture origin. Results. E2 showed the lowest slow crack growth susceptibility coefficient (17.2), followed by D (20.4) and V (26.3). E1 and IC presented the highest n values (30.1 and 31.1, respectively). Porcelain V presented the lowest Weibull modulus (5.2). All other materials showed similar Weibull modulus values, ranging from 9.4 to 11.7. Fractographic analysis indicated that for porcelain D, glass-ceramics E1 and E2, and composite IC crack deflection was the main toughening mechanism. Significance. This study provides a detailed microstructural and slow crack growth characterization of widely used dental ceramics. This is important from a clinical standpoint to assist the clinician in choosing the best ceramic material for each situation as well as predicting its clinical longevity. It also can be helpful in developing new materials for dental prostheses. (c) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To determine the effect of ion exchange on slow crack growth (SCG) parameters (n, stress corrosion susceptibility coefficient, and sigma(f0), scaling parameter) and Weibull parameters (m, Weibull modulus, and sigma(0), characteristic strength) of a dental porcelain. Methods. 160 porcelain discs were fabricated according to manufacturer`s instructions, polished through 1 mu m and divided into two groups: GC (control) and GI (submitted to an ion exchange procedure using a KNO(3) paste at 470 degrees C for 15 min). SCG parameters were determined by biaxial flexural strength test in artificial saliva at 37 degrees C using five constant stress rates (n =10). 20 specimens of each group were tested at 1 MPa/s to determine Weibull parameters. The SPT diagram was constructed using the least-squares fit of the strength data versus probability of failure. Results. Mean values of m and sigma(0) (95% confidence interval), n and sigma(f0) (standard deviation) were, respectively: 13.8 (10.1-18.8) and 60.4 (58.5 - 62.2), 24.1 (2.5) and 58.1 (0.01) for GC and 7.4 (5.3 -10.0) and 136.8 (129.1-144.7), 36.7 (7.3) and 127.9 (0.01) for GI. Fracture stresses (MPa) calculated using the SPT diagram for lifetimes of 1 day, 1 year and 10 years (at a 5% failure probability) were, respectively, 31.8, 24.9 and 22.7 for GC and 71.2, 60.6 and 56.9 for GI. Significance. For the porcelain tested, the ion exchange process improved strength and resistance to SCG, however, the material`s reliability decreased. The predicted fracture stress at 5% failure probability for a lifetime of 10 years was also higher for the ion treated group. (C) 009 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The objective was to compare fracture toughness (K(Ic)), stress corrosion susceptibility coefficient (n), and stress intensity factor threshold for crack propagation (K(I0)) of two porcelains [VM7/Vita (V) and d.Sign/Ivoclar (D)], two glass-ceramics [Empress/Ivolcar (E1) and Empress2/Ivlocar (E2)] and a glass-infiltrated alumina composite [In-Ceram Alumina/Vita (IC)]. Disks were constructed according to each manufacturer`s processing method, and polished before induction of cracks by a Vickers indenter. Crack lengths were measured under optical microscopy at times between 0.1 and 100 h. Specimens were stored in artificial saliva at 37A degrees C during the whole experiment. K(Ic) and n were determined using indentation fracture method. K(I0) was determined by plotting log crack velocity versus log K(I). Microstructure characterization was carried out under SEM, EDS, X-ray diffraction and X-ray fluorescence. IC and E2 presented higher K(Ic) and K(I0) compared to E1, V, and D. IC presented the highest n value, followed by E2, D, E1, and V in a decreasing order. V and D presented similar K(Ic), but porcelain V showed higher K(I0) and lower n compared to D. Microstructure features (volume fraction, size, aspect ratio of crystalline phases and chemical composition of glassy matrix) determined K(Ic). The increase of K(Ic) value favored the increases of n and K(I0).
Resumo:
Objectives. To determine the stress corrosion susceptibility coefficient, n, of seven dental porcelains (A: Ceramco I; B: Ceramco-II; C: Ceramco-III; D: d.Sign; E: Cerabien; F: Vitadur-Alpha; and G: Ultropaline) after aging in air or artificial saliva, and correlate results with leucite content (LC). Methods. Bars were fired according to manufacturers` instructions and polished before induction of cracks by a Vickers indenter (19.6 N, 20 s). Four specimens were stored in air/room temperature, and three in saliva/37 degrees C. Five indentations were made per specimen and crack lengths measured at the following times: similar to 0; 1; 3; 10; 30; 100; 300; 1000 and 3000 h. The stress corrosion coefficient n was calculated by linear regression analysis after plotting crack length as a function of time, considering that the slope of the curve was (2/(3n + 2)]. Microstructural analysis was performed to determine LC. Results. LC of the porcelains were 22% (A and B); 6% (C); 15% (D); 0% (E and F); and 13% (G). Except for porcelains A and D, all materials showed a decrease in their n values when stored in artificial saliva. However, the decrease was more pronounced for porcelains B, F, and G. Ranking of materials varied according to storage media (in air, porcelain G showed higher n compared to A, while in saliva both showed similar coefficients). No correlation was found between n values and LC in air or saliva. Significance. Storage media influenced the n value obtained for most of the materials. LC did not affect resistance to slow crack growth regardless of the test environment. (c) 2008 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives. To evaluate the effect of pH of storage medium on slow crack growth (SCG) parameters of dental porcelains. Methods. Two porcelains were selected: with (UD) and without (VM7) leucite particles, in order to assess if the microstructure would affect the response of the material to the pH variation. Disc specimens were produced following manufacturers` instructions. Specimens were stored in artificial saliva in pHs 3.5, 7.0 or 10.0 for 10 days and after that the fatigue parameters (n: SCG susceptibility coefficient and sigma(0): scaling parameter) were obtained by the dynamic fatigue test using the same pH of storage. Microstructural analysis of the materials was also performed. Results. For VM7, the values of n obtained in the different pHs were similar and varied from 29.9 to 31.2. The sigma(0) value obtained in pH 7.0 for VM7 was higher than that obtained in the other pHs, which were similar. For porcelain UD, n values obtained in pHs 7.0 and 10.0 were similar (40.8 and 39.6, respectively), and higher than that obtained in pH 3.5 (26.5). With respect to sigma(0), the value obtained for porcelain UD in pH 10.0 was lower than those obtained in pHs 3.5 and 7.0, which were similar. Significance. The effect of pH on the stress corrosion susceptibility (n) depended on the porcelain studied. While the n value of VM7 was not affected by the pH, UD presented lower n value in acid pH. For both porcelains, storage in acid or basic pH resulted in strength degradation. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.