907 resultados para RGB-D sensors
Resumo:
This paper presents a method for the fast calculation of a robot’s egomotion using visual features. The method is part of a complete system for automatic map building and Simultaneous Location and Mapping (SLAM). The method uses optical flow to determine whether the robot has undergone a movement. If so, some visual features that do not satisfy several criteria are deleted, and then egomotion is calculated. Thus, the proposed method improves the efficiency of the whole process because not all the data is processed. We use a state-of-the-art algorithm (TORO) to rectify the map and solve the SLAM problem. Additionally, a study of different visual detectors and descriptors has been conducted to identify which of them are more suitable for the SLAM problem. Finally, a navigation method is described using the map obtained from the SLAM solution.
Resumo:
In this thesis a methodology for representing 3D subjects and their deformations in adverse situations is studied. The study is focused in providing methods based on registration techniques to improve the data in situations where the sensor is working in the limit of its sensitivity. In order to do this, it is proposed two methods to overcome the problems which can difficult the process in these conditions. First a rigid registration based on model registration is presented, where the model of 3D planar markers is used. This model is estimated using a proposed method which improves its quality by taking into account prior knowledge of the marker. To study the deformations, it is proposed a framework to combine multiple spaces in a non-rigid registration technique. This proposal improves the quality of the alignment with a more robust matching process that makes use of all available input data. Moreover, this framework allows the registration of multiple spaces simultaneously providing a more general technique. Concretely, it is instantiated using colour and location in the matching process for 3D location registration.
Resumo:
Los sensores de propósito general RGB-D son dispositivos capaces de proporcionar información de color y de profundidad de la escena. Debido al amplio rango de aplicación que tienen estos sensores, despiertan gran interés en múltiples áreas, provocando que en algunos casos funcionen al límite de sensibilidad. Los métodos de calibración resultan más importantes, si cabe, para este tipo de sensores para mejorar la precisión de los datos adquiridos. Por esta razón, resulta de enorme transcendencia analizar y estudiar el calibrado de estos sensores RGBD de propósito general. En este trabajo se ha realizado un estudio de las diferentes tecnologías empleadas para determinar la profundidad, siendo la luz estructurada y el tiempo de vuelo las más comunes. Además, se ha analizado y estudiado aquellos parámetros del sensor que influyen en la obtención de los datos con precisión adecuada dependiendo del problema a tratar. El calibrado determina, como primer elemento del proceso de visión, los parámetros característicos que definen un sistema de visión artificial, en este caso, aquellos que permiten mejorar la exactitud y precisión de los datos aportados. En este trabajo se han analizado tres algoritmos de calibración, tanto de propósito general como de propósito específico, para llevar a cabo el proceso de calibrado de tres sensores ampliamente utilizados: Microsoft Kinect, PrimeSense Carmine 1.09 y Microsoft Kinect v2. Los dos primeros utilizan la tecnología de luz estructurada para determinar la profundidad, mientras que el tercero utiliza tiempo de vuelo. La experimentación realizada permite determinar de manera cuantitativa la exactitud y la precisión de los sensores y su mejora durante el proceso de calibrado, aportando los mejores resultados para cada caso. Finalmente, y con el objetivo de mostrar el proceso de calibrado en un sistema de registro global, diferentes pruebas han sido realizadas con el método de registro µ-MAR. Se ha utilizado inspección visual para determinar el comportamiento de los datos de captura corregidos según los resultados de los diferentes algoritmos de calibrado. Este hecho permite observar la importancia de disponer de datos exactos para ciertas aplicaciones como el registro 3D de una escena.
Resumo:
En este trabajo se propone un método que combina descriptores de imágenes de intensidad y de profundidad para detectar de manera robusta el problema de cierre de bucle en SLAM. La robustez del método, proporcionada por el empleo conjunto de información de diversa naturaleza, permite detectar lugares revisitados en situaciones donde m´etodos basados solo en intensidad o en profundidad presentan dificultades (p.e. condiciones de iluminación deficientes, o falta de geometría). Además, se ha diseñado el métod cuenta su eficiencia, recurriendo para ello al detector FAST para extraer las características de las observaciones y al descriptor binario BRIEF. La detección de bucle se completa con una Bolsa de Palabras binarias. El rendimiento del método propuesto se ha evaluado en condiciones reales, obteniéndose resultados muy satisfactorios.
Resumo:
Nowadays, the use of RGB-D sensors have focused a lot of research in computer vision and robotics. These kinds of sensors, like Kinect, allow to obtain 3D data together with color information. However, their working range is limited to less than 10 meters, making them useless in some robotics applications, like outdoor mapping. In these environments, 3D lasers, working in ranges of 20-80 meters, are better. But 3D lasers do not usually provide color information. A simple 2D camera can be used to provide color information to the point cloud, but a calibration process between camera and laser must be done. In this paper we present a portable calibration system to calibrate any traditional camera with a 3D laser in order to assign color information to the 3D points obtained. Thus, we can use laser precision and simultaneously make use of color information. Unlike other techniques that make use of a three-dimensional body of known dimensions in the calibration process, this system is highly portable because it makes use of small catadioptrics that can be placed in a simple manner in the environment. We use our calibration system in a 3D mapping system, including Simultaneous Location and Mapping (SLAM), in order to get a 3D colored map which can be used in different tasks. We show that an additional problem arises: 2D cameras information is different when lighting conditions change. So when we merge 3D point clouds from two different views, several points in a given neighborhood could have different color information. A new method for color fusion is presented, obtaining correct colored maps. The system will be tested by applying it to 3D reconstruction.
Resumo:
Paper submitted to the 43rd International Symposium on Robotics (ISR2012), Taipei, Taiwan, Aug. 29-31, 2012.
Resumo:
Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.
Resumo:
Since the beginning of 3D computer vision problems, the use of techniques to reduce the data to make it treatable preserving the important aspects of the scene has been necessary. Currently, with the new low-cost RGB-D sensors, which provide a stream of color and 3D data of approximately 30 frames per second, this is getting more relevance. Many applications make use of these sensors and need a preprocessing to downsample the data in order to either reduce the processing time or improve the data (e.g., reducing noise or enhancing the important features). In this paper, we present a comparison of different downsampling techniques which are based on different principles. Concretely, five different downsampling methods are included: a bilinear-based method, a normal-based, a color-based, a combination of the normal and color-based samplings, and a growing neural gas (GNG)-based approach. For the comparison, two different models have been used acquired with the Blensor software. Moreover, to evaluate the effect of the downsampling in a real application, a 3D non-rigid registration is performed with the data sampled. From the experimentation we can conclude that depending on the purpose of the application some kernels of the sampling methods can improve drastically the results. Bilinear- and GNG-based methods provide homogeneous point clouds, but color-based and normal-based provide datasets with higher density of points in areas with specific features. In the non-rigid application, if a color-based sampled point cloud is used, it is possible to properly register two datasets for cases where intensity data are relevant in the model and outperform the results if only a homogeneous sampling is used.
Resumo:
Nowadays, new computers generation provides a high performance that enables to build computationally expensive computer vision applications applied to mobile robotics. Building a map of the environment is a common task of a robot and is an essential part to allow the robots to move through these environments. Traditionally, mobile robots used a combination of several sensors from different technologies. Lasers, sonars and contact sensors have been typically used in any mobile robotic architecture, however color cameras are an important sensor due to we want the robots to use the same information that humans to sense and move through the different environments. Color cameras are cheap and flexible but a lot of work need to be done to give robots enough visual understanding of the scenes. Computer vision algorithms are computational complex problems but nowadays robots have access to different and powerful architectures that can be used for mobile robotics purposes. The advent of low-cost RGB-D sensors like Microsoft Kinect which provide 3D colored point clouds at high frame rates made the computer vision even more relevant in the mobile robotics field. The combination of visual and 3D data allows the systems to use both computer vision and 3D processing and therefore to be aware of more details of the surrounding environment. The research described in this thesis was motivated by the need of scene mapping. Being aware of the surrounding environment is a key feature in many mobile robotics applications from simple robotic navigation to complex surveillance applications. In addition, the acquisition of a 3D model of the scenes is useful in many areas as video games scene modeling where well-known places are reconstructed and added to game systems or advertising where once you get the 3D model of one room the system can add furniture pieces using augmented reality techniques. In this thesis we perform an experimental study of the state-of-the-art registration methods to find which one fits better to our scene mapping purposes. Different methods are tested and analyzed on different scene distributions of visual and geometry appearance. In addition, this thesis proposes two methods for 3d data compression and representation of 3D maps. Our 3D representation proposal is based on the use of Growing Neural Gas (GNG) method. This Self-Organizing Maps (SOMs) has been successfully used for clustering, pattern recognition and topology representation of various kind of data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models without considering time constraints. Self-organising neural models have the ability to provide a good representation of the input space. In particular, the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time consuming, specially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This thesis proposes a hardware implementation leveraging the computing power of modern GPUs which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). Our proposed geometrical 3D compression method seeks to reduce the 3D information using plane detection as basic structure to compress the data. This is due to our target environments are man-made and therefore there are a lot of points that belong to a plane surface. Our proposed method is able to get good compression results in those man-made scenarios. The detected and compressed planes can be also used in other applications as surface reconstruction or plane-based registration algorithms. Finally, we have also demonstrated the goodness of the GPU technologies getting a high performance implementation of a CAD/CAM common technique called Virtual Digitizing.
Resumo:
Esta tesis se centra en desarrollo de tecnologías para la interacción hombre-robot en entornos nucleares de fusión. La problemática principal del sector de fusión nuclear radica en las condiciones ambientales tan extremas que hay en el interior del reactor, y la necesidad de que los equipos cumplan requisitos muy restrictivos para poder aguantar esos niveles de radiación, magnetismo, ultravacío, temperatura... Como no es viable la ejecución de tareas directamente por parte de humanos, habrá que utilizar dispositivos de manipulación remota para llevar a cabo los procesos de operación y mantenimiento. En las instalaciones de ITER es obligatorio tener un entorno controlado de extrema seguridad, que necesita de estándares validados. La definición y uso de protocolos es indispensable para regir su buen funcionamiento. Si nos centramos en la telemanipulación con algo grado de escalado, surge la necesidad de definir protocolos para sistemas abiertos que permitan la interacción entre equipos y dispositivos de diversa índole. En este contexto se plantea la definición del Protocolo de Teleoperación que permita la interconexión entre dispositivos maestros y esclavos de distinta tipología, pudiéndose comunicar bilateralmente entre sí y utilizar distintos algoritmos de control según la tarea a desempeñar. Este protocolo y su interconectividad se han puesto a prueba en la Plataforma Abierta de Teleoperación (P.A.T.) que se ha desarrollado e integrado en la ETSII UPM como una herramienta que permita probar, validar y realizar experimentos de telerrobótica. Actualmente, este Protocolo de Teleoperación se ha propuesto a través de AENOR al grupo ISO de Telerobotics como una solución válida al problema existente y se encuentra bajo revisión. Con el diseño de dicho protocolo se ha conseguido enlazar maestro y esclavo, sin embargo con los niveles de radiación tan altos que hay en ITER la electrónica del controlador no puede entrar dentro del tokamak. Por ello se propone que a través de una mínima electrónica convenientemente protegida se puedan multiplexar las señales de control que van a través del cableado umbilical desde el controlador hasta la base del robot. En este ejercicio teórico se demuestra la utilidad y viabilidad de utilizar este tipo de solución para reducir el volumen y peso del cableado umbilical en cifras aproximadas de un 90%, para ello hay que desarrollar una electrónica específica y con certificación RadHard para soportar los enormes niveles de radiación de ITER. Para este manipulador de tipo genérico y con ayuda de la Plataforma Abierta de Teleoperación, se ha desarrollado un algoritmo que mediante un sensor de fuerza/par y una IMU colocados en la muñeca del robot, y convenientemente protegidos ante la radiación, permiten calcular las fuerzas e inercias que produce la carga, esto es necesario para poder transmitirle al operador unas fuerzas escaladas, y que pueda sentir la carga que manipula, y no otras fuerzas que puedan influir en el esclavo remoto, como ocurre con otras técnicas de estimación de fuerzas. Como el blindaje de los sensores no debe ser grande ni pesado, habrá que destinar este tipo de tecnología a las tareas de mantenimiento de las paradas programadas de ITER, que es cuando los niveles de radiación están en sus valores mínimos. Por otro lado para que el operador sienta lo más fielmente posible la fuerza de carga se ha desarrollado una electrónica que mediante el control en corriente de los motores permita realizar un control en fuerza a partir de la caracterización de los motores del maestro. Además para aumentar la percepción del operador se han realizado unos experimentos que demuestran que al aplicar estímulos multimodales (visuales, auditivos y hápticos) aumenta su inmersión y el rendimiento en la consecución de la tarea puesto que influyen directamente en su capacidad de respuesta. Finalmente, y en referencia a la realimentación visual del operador, en ITER se trabaja con cámaras situadas en localizaciones estratégicas, si bien el humano cuando manipula objetos hace uso de su visión binocular cambiando constantemente el punto de vista adecuándose a las necesidades visuales de cada momento durante el desarrollo de la tarea. Por ello, se ha realizado una reconstrucción tridimensional del espacio de la tarea a partir de una cámara-sensor RGB-D, lo cual nos permite obtener un punto de vista binocular virtual móvil a partir de una cámara situada en un punto fijo que se puede proyectar en un dispositivo de visualización 3D para que el operador pueda variar el punto de vista estereoscópico según sus preferencias. La correcta integración de estas tecnologías para la interacción hombre-robot en la P.A.T. ha permitido validar mediante pruebas y experimentos para verificar su utilidad en la aplicación práctica de la telemanipulación con alto grado de escalado en entornos nucleares de fusión. Abstract This thesis focuses on developing technologies for human-robot interaction in nuclear fusion environments. The main problem of nuclear fusion sector resides in such extreme environmental conditions existing in the hot-cell, leading to very restrictive requirements for equipment in order to deal with these high levels of radiation, magnetism, ultravacuum, temperature... Since it is not feasible to carry out tasks directly by humans, we must use remote handling devices for accomplishing operation and maintenance processes. In ITER facilities it is mandatory to have a controlled environment of extreme safety and security with validated standards. The definition and use of protocols is essential to govern its operation. Focusing on Remote Handling with some degree of escalation, protocols must be defined for open systems to allow interaction among different kind of equipment and several multifunctional devices. In this context, a Teleoperation Protocol definition enables interconnection between master and slave devices from different typologies, being able to communicate bilaterally one each other and using different control algorithms depending on the task to perform. This protocol and its interconnectivity have been tested in the Teleoperation Open Platform (T.O.P.) that has been developed and integrated in the ETSII UPM as a tool to test, validate and conduct experiments in Telerobotics. Currently, this protocol has been proposed for Teleoperation through AENOR to the ISO Telerobotics group as a valid solution to the existing problem, and it is under review. Master and slave connection has been achieved with this protocol design, however with such high radiation levels in ITER, the controller electronics cannot enter inside the tokamak. Therefore it is proposed a multiplexed electronic board, that through suitable and RadHard protection processes, to transmit control signals through an umbilical cable from the controller to the robot base. In this theoretical exercise the utility and feasibility of using this type of solution reduce the volume and weight of the umbilical wiring approximate 90% less, although it is necessary to develop specific electronic hardware and validate in RadHard qualifications in order to handle huge levels of ITER radiation. Using generic manipulators does not allow to implement regular sensors for force feedback in ITER conditions. In this line of research, an algorithm to calculate the forces and inertia produced by the load has been developed using a force/torque sensor and IMU, both conveniently protected against radiation and placed on the robot wrist. Scaled forces should be transmitted to the operator, feeling load forces but not other undesirable forces in slave system as those resulting from other force estimation techniques. Since shielding of the sensors should not be large and heavy, it will be necessary to allocate this type of technology for programmed maintenance periods of ITER, when radiation levels are at their lowest levels. Moreover, the operator perception needs to feel load forces as accurate as possible, so some current control electronics were developed to perform a force control of master joint motors going through a correct motor characterization. In addition to increase the perception of the operator, some experiments were conducted to demonstrate applying multimodal stimuli (visual, auditory and haptic) increases immersion and performance in achieving the task since it is directly correlated with response time. Finally, referring to the visual feedback to the operator in ITER, it is usual to work with 2D cameras in strategic locations, while humans use binocular vision in direct object manipulation, constantly changing the point of view adapting it to the visual needs for performing manipulation during task procedures. In this line a three-dimensional reconstruction of non-structured scenarios has been developed using RGB-D sensor instead of cameras in the remote environment. Thus a mobile virtual binocular point of view could be generated from a camera at a fixed point, projecting stereoscopic images in 3D display device according to operator preferences. The successful integration of these technologies for human-robot interaction in the T.O.P., and validating them through tests and experiments, verify its usefulness in practical application of high scaling remote handling at nuclear fusion environments.
Resumo:
Many applications including object reconstruction, robot guidance, and. scene mapping require the registration of multiple views from a scene to generate a complete geometric and appearance model of it. In real situations, transformations between views are unknown and it is necessary to apply expert inference to estimate them. In the last few years, the emergence of low-cost depth-sensing cameras has strengthened the research on this topic, motivating a plethora of new applications. Although they have enough resolution and accuracy for many applications, some situations may not be solved with general state-of-the-art registration methods due to the signal-to-noise ratio (SNR) and the resolution of the data provided. The problem of working with low SNR data, in general terms, may appear in any 3D system, then it is necessary to propose novel solutions in this aspect. In this paper, we propose a method, μ-MAR, able to both coarse and fine register sets of 3D points provided by low-cost depth-sensing cameras, despite it is not restricted to these sensors, into a common coordinate system. The method is able to overcome the noisy data problem by means of using a model-based solution of multiplane registration. Specifically, it iteratively registers 3D markers composed by multiple planes extracted from points of multiple views of the scene. As the markers and the object of interest are static in the scenario, the transformations obtained for the markers are applied to the object in order to reconstruct it. Experiments have been performed using synthetic and real data. The synthetic data allows a qualitative and quantitative evaluation by means of visual inspection and Hausdorff distance respectively. The real data experiments show the performance of the proposal using data acquired by a Primesense Carmine RGB-D sensor. The method has been compared to several state-of-the-art methods. The results show the good performance of the μ-MAR to register objects with high accuracy in presence of noisy data outperforming the existing methods.
Resumo:
Atualmente os sistemas de pilotagem autónoma de quadricópteros estão a ser desenvolvidos de forma a efetuarem navegação em espaços exteriores, onde o sinal de GPS pode ser utilizado para definir waypoints de navegação, modos de position e altitude hold, returning home, entre outros. Contudo, o problema de navegação autónoma em espaços fechados sem que se utilize um sistema de posicionamento global dentro de uma sala, subsiste como um problema desafiante e sem solução fechada. Grande parte das soluções são baseadas em sensores dispendiosos, como o LIDAR ou como sistemas de posicionamento externos (p.ex. Vicon, Optitrack). Algumas destas soluções reservam a capacidade de processamento de dados dos sensores e dos algoritmos mais exigentes para sistemas de computação exteriores ao veículo, o que também retira a componente de autonomia total que se pretende num veículo com estas características. O objetivo desta tese pretende, assim, a preparação de um sistema aéreo não-tripulado de pequeno porte, nomeadamente um quadricóptero, que integre diferentes módulos que lhe permitam simultânea localização e mapeamento em espaços interiores onde o sinal GPS ´e negado, utilizando, para tal, uma câmara RGB-D, em conjunto com outros sensores internos e externos do quadricóptero, integrados num sistema que processa o posicionamento baseado em visão e com o qual se pretende que efectue, num futuro próximo, planeamento de movimento para navegação. O resultado deste trabalho foi uma arquitetura integrada para análise de módulos de localização, mapeamento e navegação, baseada em hardware aberto e barato e frameworks state-of-the-art disponíveis em código aberto. Foi também possível testar parcialmente alguns módulos de localização, sob certas condições de ensaio e certos parâmetros dos algoritmos. A capacidade de mapeamento da framework também foi testada e aprovada. A framework obtida encontra-se pronta para navegação, necessitando apenas de alguns ajustes e testes.
Resumo:
Il y a présentement de la demande dans plusieurs milieux cherchant à utiliser des robots afin d'accomplir des tâches complexes, par exemple l'industrie de la construction désire des travailleurs pouvant travailler 24/7 ou encore effectuer des operation de sauvetage dans des zones compromises et dangereuses pour l'humain. Dans ces situations, il devient très important de pouvoir transporter des charges dans des environnements encombrés. Bien que ces dernières années il y a eu quelques études destinées à la navigation de robots dans ce type d'environnements, seulement quelques-unes d'entre elles ont abordé le problème de robots pouvant naviguer en déplaçant un objet volumineux ou lourd. Ceci est particulièrement utile pour transporter des charges ayant de poids et de formes variables, sans avoir à modifier physiquement le robot. Un robot humanoïde est une des plateformes disponibles afin d'effectuer efficacement ce type de transport. Celui-ci a, entre autres, l'avantage d'avoir des bras et ils peuvent donc les utiliser afin de manipuler précisément les objets à transporter. Dans ce mémoire de maîtrise, deux différentes techniques sont présentées. Dans la première partie, nous présentons un système inspiré par l'utilisation répandue de chariots de fortune par les humains. Celle-ci répond au problème d'un robot humanoïde naviguant dans un environnement encombré tout en déplaçant une charge lourde qui se trouve sur un chariot de fortune. Nous présentons un système de navigation complet, de la construction incrémentale d'une carte de l'environnement et du calcul des trajectoires sans collision à la commande pour exécuter ces trajectoires. Les principaux points présentés sont : 1) le contrôle de tout le corps permettant au robot humanoïde d'utiliser ses mains et ses bras pour contrôler les mouvements du système à chariot (par exemple, lors de virages serrés) ; 2) une approche sans capteur pour automatiquement sélectionner le jeu approprié de primitives en fonction du poids de la charge ; 3) un algorithme de planification de mouvement qui génère une trajectoire sans collisions en utilisant le jeu de primitive approprié et la carte construite de l'environnement ; 4) une technique de filtrage efficace permettant d'ignorer le chariot et le poids situés dans le champ de vue du robot tout en améliorant les performances générales des algorithmes de SLAM (Simultaneous Localization and Mapping) défini ; et 5) un processus continu et cohérent d'odométrie formés en fusionnant les informations visuelles et celles de l'odométrie du robot. Finalement, nous présentons des expériences menées sur un robot Nao, équipé d'un capteur RGB-D monté sur sa tête, poussant un chariot avec différentes masses. Nos expériences montrent que la charge utile peut être significativement augmentée sans changer physiquement le robot, et donc qu'il est possible d'augmenter la capacité du robot humanoïde dans des situations réelles. Dans la seconde partie, nous abordons le problème de faire naviguer deux robots humanoïdes dans un environnement encombré tout en transportant un très grand objet qui ne peut tout simplement pas être déplacé par un seul robot. Dans cette partie, plusieurs algorithmes et concepts présentés dans la partie précédente sont réutilisés et modifiés afin de convenir à un système comportant deux robot humanoides. Entre autres, nous avons un algorithme de planification de mouvement multi-robots utilisant un espace d'états à faible dimension afin de trouver une trajectoire sans obstacle en utilisant la carte construite de l'environnement, ainsi qu'un contrôle en temps réel efficace de tout le corps pour contrôler les mouvements du système robot-objet-robot en boucle fermée. Aussi, plusieurs systèmes ont été ajoutés, tels que la synchronisation utilisant le décalage relatif des robots, la projection des robots sur la base de leur position des mains ainsi que l'erreur de rétroaction visuelle calculée à partir de la caméra frontale du robot. Encore une fois, nous présentons des expériences faites sur des robots Nao équipés de capteurs RGB-D montés sur leurs têtes, se déplaçant avec un objet tout en contournant d'obstacles. Nos expériences montrent qu'un objet de taille non négligeable peut être transporté sans changer physiquement le robot.
Resumo:
For a planetary rover to successfully traverse across unstructured terrain autonomously, one of the major challenges is to assess its local traversability such that it can plan a trajectory to achieve its mission goals efficiently while minimising risk to the vehicle itself. This paper aims to provide a comparative study on different approaches for representing the geometry of Martian terrain for the purpose of evaluating terrain traversability. An accurate representation of the geometric properties of the terrain is essential as it can directly affect the determination of traversability for a ground vehicle. We explore current state-of-the-art techniques for terrain estimation, in particular Gaussian Processes (GP) in various forms, and discuss the suitability of each technique in the context of an unstructured Martian terrain. Furthermore, we present the limitations of regression techniques in terms of spatial correlation and continuity assumptions, and the impact on traversability analysis of a planetary rover across unstructured terrain. The analysis was performed on datasets of the Mars Yard at the Powerhouse Museum in Sydney, obtained using the onboard RGB-D camera.
Resumo:
Motion planning for planetary rovers must consider control uncertainty in order to maintain the safety of the platform during navigation. Modelling such control uncertainty is difficult due to the complex interaction between the platform and its environment. In this paper, we propose a motion planning approach whereby the outcome of control actions is learned from experience and represented statistically using a Gaussian process regression model. This model is used to construct a control policy for navigation to a goal region in a terrain map built using an on-board RGB-D camera. The terrain includes flat ground, small rocks, and non-traversable rocks. We report the results of 200 simulated and 35 experimental trials that validate the approach and demonstrate the value of considering control uncertainty in maintaining platform safety.