941 resultados para RAPID ANALYSIS
Resumo:
In the absence of a suitable method for routine analysis of large numbers of natural river water samples for organic nitrogen and phosphorus fractions, a new simultaneous digestion technique was developed, based on a standard persulphate digestion procedure. This allows rapid analysis of river, lake and groundwater samples from a range of environments for total nitrogen and phosphorus. The method was evaluated using a range of organic nitrogen and phosphorus structures tested at low, mid and high range concentrations from 2 to 50 mg l-1 nitrogen and 0.2 to 10 mg l-1 phosphorus. Mean recoveries for nitrogen ranged from 94.5% (2 mg I-1) to 92.7% (50 mg I-1) and for phosphorus were 98.2% (0.2 mg l-1) to 100.2% (10 mg l-1). The method is precise in its ability m reproduce results from replicate digestions, and robust in its ability to handle a variety of natural water samples in the pH range 5-8.
Resumo:
FAPESP
Resumo:
This work reports the characterization of 11 polymorphic microsatellite loci in section Caulorrhizae. The primer pairs were designed from Arachis pintoi and showed full transferability to Arachis repens species. These new markers were used to evaluate the genetic diversity in germplasm (accessions and cultivars) of section Caulorrhizae. This new set of markers detected greater gene diversity than morphological and molecular markers such as AFLP (amplified fragment length polymorphism) and RAPD (rapid analysis of polymorphic DNA) previously used in this germplasm.
Resumo:
The cyclic voltammetric behavior of acetaldehyde and the derivatized product with 2,4-dinitrophenylhydrazine (DNPHi) has been studied at a glassy carbon electrode. This study was used to optimize the best experimental conditions for its determination by high-performance liquid chromatographic (HPLC) separation coupled with electrochemical detection. The acetaldehyde-2,4-dinitrophenyl.hydrazone (ADNPH) was eluted and separated by a reversed-phase column, C-18, under isocratic conditions with the mobile phase containing a binary mixture of methanol/LiCl(aq) at a concentration of 1.0 x 10(-3) M (80:20 v/v) and a flow rate of 1.0 mL min(-1). The optimum condition for the electrochemical detection of ADNPH was +1.0 V vs. Ag/AgCl as a reference electrode. The proposed method was simple, rapid (analysis time 7 min) and sensitive (detection limit 3.80 mu g L-1) at a signal-to-noise ratio of 3:1. It was also highly selective and reproducible [standard deviation 8.2% +/- 0.36 (n = 5)]. The analytical curve of ADNPH was linear over the range of 3-300 mg L-1 per injection (20 mu L), and the analytical recovery was > 99%.
Resumo:
Pós-graduação em Química - IQ
Resumo:
This Graduate Work aims to exhibit the analyze of the applicability of LED technology in a real outdoor lighting situation, and this project’s illumination solution is compared with the initial proposal, the sodium vapor lamps. What is studied is an outdoor area, like the roads and parking lots of a plant. A light planning software is used for this comparison, and the results are displayed instantly, allowing rapid analysis of the project through a simulation. The medium illuminance is the same in both solutions for this case study and minimum rates set as standard were observed then the analysis are appropriate in this project. Various aspects are considered in order to obtain a comprehensive analysis of this project, such as economic, environmental and quality of lighting. LED technology in outdoor lighting is presented in its infancy, but promising. Solid state lamps show great advantages when compared with other technologies, such as discharge lamps, however there are some disadvantages tied to new products that are expected to be overcome with technological development and increased production
Resumo:
Healthcare, Human Computer Interfaces (HCI), Security and Biometry are the most promising application scenario directly involved in the Body Area Networks (BANs) evolution. Both wearable devices and sensors directly integrated in garments envision a word in which each of us is supervised by an invisible assistant monitoring our health and daily-life activities. New opportunities are enabled because improvements in sensors miniaturization and transmission efficiency of the wireless protocols, that achieved the integration of high computational power aboard independent, energy-autonomous, small form factor devices. Application’s purposes are various: (I) data collection to achieve off-line knowledge discovery; (II) user notification of his/her activities or in case a danger occurs; (III) biofeedback rehabilitation; (IV) remote alarm activation in case the subject need assistance; (V) introduction of a more natural interaction with the surrounding computerized environment; (VI) users identification by physiological or behavioral characteristics. Telemedicine and mHealth [1] are two of the leading concepts directly related to healthcare. The capability to borne unobtrusiveness objects supports users’ autonomy. A new sense of freedom is shown to the user, not only supported by a psychological help but a real safety improvement. Furthermore, medical community aims the introduction of new devices to innovate patient treatments. In particular, the extension of the ambulatory analysis in the real life scenario by proving continuous acquisition. The wide diffusion of emerging wellness portable equipment extended the usability of wearable devices also for fitness and training by monitoring user performance on the working task. The learning of the right execution techniques related to work, sport, music can be supported by an electronic trainer furnishing the adequate aid. HCIs made real the concept of Ubiquitous, Pervasive Computing and Calm Technology introduced in the 1988 by Marc Weiser and John Seeley Brown. They promotes the creation of pervasive environments, enhancing the human experience. Context aware, adaptive and proactive environments serve and help people by becoming sensitive and reactive to their presence, since electronics is ubiquitous and deployed everywhere. In this thesis we pay attention to the integration of all the aspects involved in a BAN development. Starting from the choice of sensors we design the node, configure the radio network, implement real-time data analysis and provide a feedback to the user. We present algorithms to be implemented in wearable assistant for posture and gait analysis and to provide assistance on different walking conditions, preventing falls. Our aim, expressed by the idea to contribute at the development of a non proprietary solutions, driven us to integrate commercial and standard solutions in our devices. We use sensors available on the market and avoided to design specialized sensors in ASIC technologies. We employ standard radio protocol and open source projects when it was achieved. The specific contributions of the PhD research activities are presented and discussed in the following. • We have designed and build several wireless sensor node providing both sensing and actuator capability making the focus on the flexibility, small form factor and low power consumption. The key idea was to develop a simple and general purpose architecture for rapid analysis, prototyping and deployment of BAN solutions. Two different sensing units are integrated: kinematic (3D accelerometer and 3D gyroscopes) and kinetic (foot-floor contact pressure forces). Two kind of feedbacks were implemented: audio and vibrotactile. • Since the system built is a suitable platform for testing and measuring the features and the constraints of a sensor network (radio communication, network protocols, power consumption and autonomy), we made a comparison between Bluetooth and ZigBee performance in terms of throughput and energy efficiency. Test in the field evaluate the usability in the fall detection scenario. • To prove the flexibility of the architecture designed, we have implemented a wearable system for human posture rehabilitation. The application was developed in conjunction with biomedical engineers who provided the audio-algorithms to furnish a biofeedback to the user about his/her stability. • We explored off-line gait analysis of collected data, developing an algorithm to detect foot inclination in the sagittal plane, during walk. • In collaboration with the Wearable Lab – ETH, Zurich, we developed an algorithm to monitor the user during several walking condition where the user carry a load. The remainder of the thesis is organized as follows. Chapter I gives an overview about Body Area Networks (BANs), illustrating the relevant features of this technology and the key challenges still open. It concludes with a short list of the real solutions and prototypes proposed by academic research and manufacturers. The domain of the posture and gait analysis, the methodologies, and the technologies used to provide real-time feedback on detected events, are illustrated in Chapter II. The Chapter III and IV, respectively, shown BANs developed with the purpose to detect fall and monitor the gait taking advantage by two inertial measurement unit and baropodometric insoles. Chapter V reports an audio-biofeedback system to improve balance on the information provided by the use centre of mass. A walking assistant based on the KNN classifier to detect walking alteration on load carriage, is described in Chapter VI.
Resumo:
Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry was established to develop field-deployable biodosimeters based, in part, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter.
Resumo:
Understanding nuclear receptor signaling in vivo would be facilitated by an efficient methodology to determine where a nuclear receptor is active. Herein, we present a feedback-inducible expression system in transgenic mice to detect activated nuclear receptor effector proteins by using an inducible reporter gene. With this approach, reporter gene induction is not limited to a particular tissue, and, thus, this approach provides the opportunity for whole-animal screens. Furthermore, the effector and reporter genes are combined to generate a single strain of transgenic mice, which enables direct and rapid analysis of the offspring. The system was applied to localize sites where the retinoic acid receptor ligand-binding domain is activated in vivo. The results identify previously discovered sources of retinoids in the embryo and indicate the existence of previously undiscovered regions of retinoic acid receptor signaling in vivo. Notably, the feedback-inducible nuclear-receptor-driven assay, combined with an independent in vitro assay, provides evidence for a site of retinoid synthesis in the isthmic mesenchyme. These data illustrate the potential of feedback-inducible nuclear-receptor-driven analyses for assessing in vivo activation patterns of nuclear receptors and for analyzing pharmacological properties of natural and synthetic ligands of potential therapeutic value.
Resumo:
As unidades de beneficiamento de minério de ouro buscam cada vez mais uma produção de baixo custo e maximização dos ganhos financeiros. A caracterização tecnológica está inserida em uma abordagem multidisciplinar que permite agregar conhecimento, alternativas de otimização e redução nos custos de operação. Inserida como uma ferramenta na caracterização tecnológica, a análise de imagens automatizada tem importante papel no setor mineral principalmente pela rapidez das análises, robustez estatística e confiabilidade nos resultados. A técnica pode ser realizada por meio de imagens adquiridas em microscópio eletrônico de varredura, associada a microanálises químicas sendo utilizada em diversas etapas de um empreendimento mineiro. Este estudo tem como objetivo a caraterização tecnológica de minério de ouro da Mina Morro do Ouro, Minas Gerais na qual foi utilizado a técnica de análise de imagens automatizada por MLA em um conjunto de 88 amostras. Foi possível identificar que 90% do ouro está na fração acima de 0,020 mm; o quartzo e mica representam cerca de 80% da massa total do minério; os sulfetos apresentam diâmetro de círculo equivalente entre 80 e 100 ?m e são representados por pirita e arsenopirita, com pirrotita, calcopirita, esfalerita e galena subordinada. Também foi possível observar que o ouro está majoritariamente associado à pirita e arsenopirita e com o aumento de teor de arsênio, cresce a parcela de ouro associado à arsenopirita. As medianas das distribuições de tamanho dos grãos de ouro apresentam um valor médio de 19 ?m. Verificou-se que a composição dos grãos de ouro é bastante diversa, em média 77% de ouro e 23% de prata. Para material abaixo de 0,50 mm observa-se uma parcela expressiva de perímetro exposto dos grãos de ouro (média 73%); o ouro incluso (21% do total dos grãos de ouro) está associado a pirita e arsenopirita, sendo que em 14 das 88 amostras este valor pode superar 40% do total de ouro contido. A ferramenta da análise de imagens automatizada mostrou-se bastante eficiente definindo características particulares o que fornece de forma objetiva subsídios para os trabalhos de planejamento de mina e processamento mineral.
Resumo:
Background: Tuberculosis is one of the most prominent health problems in the world, causing 1.75 million deaths each year. Rapid clinical diagnosis is important in patients who have comorbidities such as Human Immunodeficiency Virus (HIV) infection. Direct microscopy has low sensitivity and culture takes 3 to 6 weeks [1-3]. Therefore, new tools for TB diagnosis are necessary, especially in health settings with a high prevalence of HIV/TB co-infection. Methods: In a public reference TB/HIV hospital in Brazil, we compared the cost-effectiveness of diagnostic strategies for diagnosis of pulmonary TB: Acid fast bacilli smear microscopy by Ziehl-Neelsen staining (AFB smear) plus culture and AFB smear plus colorimetric test (PCR dot-blot). From May 2003 to May 2004, sputum was collected consecutively from PTB suspects attending the Parthenon Reference Hospital. Sputum samples were examined by AFB smear, culture, and PCR dot-blot. The gold standard was a positive culture combined with the definition of clinical PTB. Cost analysis included health services and patient costs. Results: The AFB smear plus PCR dot-blot require the lowest laboratory investment for equipment (US$ 20,000). The total screening costs are 3.8 times for AFB smear plus culture versus for AFB smear plus PCR dot blot costs (US$ 5,635,760 versus US$ 1,498, 660). Costs per correctly diagnosed case were US$ 50,773 and US$ 13,749 for AFB smear plus culture and AFB smear plus PCR dot-blot, respectively. AFB smear plus PCR dot-blot was more cost-effective than AFB smear plus culture, when the cost of treating all correctly diagnosed cases was considered. The cost of returning patients, which are not treated due to a negative result, to the health service, was higher in AFB smear plus culture than for AFB smear plus PCR dot-blot, US$ 374,778,045 and US$ 110,849,055, respectively. Conclusion: AFB smear associated with PCR dot-blot associated has the potential to be a cost-effective tool in the fight against PTB for patients attended in the TB/HIV reference hospital.
Resumo:
A novel strategy for accomplishing zone trapping in flow analysis is proposed. The sample and the reagent solutions are simultaneously inserted into convergent carrier streams and the established zones merge together before reaching the detector, where the most concentrated portion of the entire sample zone is trapped. The main characteristics, potentialities and limitations of the strategy were critically evaluated in relation to an analogous flow system with zone stopping. When applied to the spectrophotometric determination of nitrite in river waters, the main figures of merit were maintained, exception made for the sampling frequency which was calculated as 189h(-1), about 32% higher relatively to the analogous system with zone stopping. The sample inserted volume can be increased up to 1.0 mL without affecting sampling frequency and no problems with pump heating or malfunctions were noted after 8-h operation of the system. In contrast to zone stopping, only a small portion of the sample zone is halted with zone trapping, leading to these beneficial effects. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper describes an analytical method for the rapid screening and identification of the phenolic constituents present in the polar extracts of different Lychnophora spp. using LC-UV/DAD-ESI-MS and LC-UV/DAD-ESI-MS/MS. Compounds were identified based on UV, retention time, MS experiments and MS/MS of precursor ion or standard. On-line phytochemical investigation of Lychnophora spp. allowed for the identification of flavonoids, chlorogenic acid derivatives and lactones. Some of the observed compounds were for the first time identified in Lychnophora species in a fast analytical procedure. The data obtained here may be helpful to the investigation of polar constituents from other Lychnophora species.
Resumo:
We aimed to study patterns of variation and factors influencing the evolutionary dynamics of a satellite DNA, pBuM, in all seven Drosophila species from the buzzatii cluster (repleta group). We analyzed 117 alpha pBuM-1 (monomer length 190 bp) and 119 composite alpha/beta (370 bp) pBuM-2 repeats and determined the chromosome location and long-range organization on DNA fibers of major sequence variants. Such combined methodologies in the study of satDNAs have been used in very few organisms. In most species, concerted evolution is linked to high copy number of pBuM repeats. Species presenting low-abundance and scattered distributed pBuM repeats did not undergo concerted evolution and maintained part of the ancestral inter-repeat variability. The alpha and alpha/beta repeats colocalized in heterochromatic regions and were distributed on multiple chromosomes, with notable differences between species. High-resolution FISH revealed array sizes of a few kilobases to over 0.7 Mb and mutual arrangements of alpha and alpha/beta repeats along the same DNA fibers, but with considerable changes in the amount of each variant across species. From sequence, chromosomal and phylogenetic data, we could infer that homogenization and amplification events involved both new and ancestral pBuM variants. Altogether, the data on the structure and organization of the pBuM satDNA give insights into genome evolution including mechanisms that contribute to concerted evolution and diversification.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.