954 resultados para Régions variables
Resumo:
The reported study was conducted to compare and contrast current manufacturing practices between two countries, Australia and Malaysia, and identify the practices that significantly influence their manufacturing performances. The results are based on data collected from surveys using a standard questionnaire in both countries. Evidence indicates that product quality and reliability is the main competitive factor for manufacturers. Maintaining a supplier rating system and regularly updating it with field failure and warranty data and making use of product data management are found to be effective manufacturing practices. In terms of the investigated manufacturing performance, Australian manufacturers are marginally ahead of their Malaysian counterparts. However, Malaysian manufacturers came out ahead on most dimensions of advanced quality and manufacturing practices, particularly in the adoption of product data management, effective supply chains and relationships with suppliers and customers.
Resumo:
Artificial neural networks (ANN) have demonstrated good predictive performance in a wide range of applications. They are, however, not considered sufficient for knowledge representation because of their inability to represent the reasoning process succinctly. This paper proposes a novel methodology Gyan that represents the knowledge of a trained network in the form of restricted first-order predicate rules. The empirical results demonstrate that an equivalent symbolic interpretation in the form of rules with predicates, terms and variables can be derived describing the overall behaviour of the trained ANN with improved comprehensibility while maintaining the accuracy and fidelity of the propositional rules.
Resumo:
Local climate is a critical element in the design of energy efficient buildings. In this paper, ten years of historical weather data in Australia's eight capital cities were profiled and analysed to characterize the variations of climatic variables in Australia. The method of descriptive statistics was employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are presented. It was found that although weather variables vary with different locations, there is often a good, nearly linear relation between a weather variable and its cumulative percentage for the majority of middle part of the cumulative curves. By comparing the slopes of these distribution profiles, it may be possible to determine the relative range of changes of the particular weather variables for a given city. The implications of these distribution profiles of key weather variables on energy efficient building design are also discussed.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causation—rests upon the pursuit of numerous lines of inquiry. The research community has focused on analytical methods development (negative binomial specifications, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might think of different lines of inquiry in terms of ‘low lying fruit’—areas of inquiry that might provide significant improvements in understanding crash causation. It is the contention of this research that omitted variable bias caused by the exclusion of important variables is an important line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant ability to better understand contributing factors to crashes. This study—believed to represent a unique contribution to the safety literature—develops and examines the role of a sizeable set of spatial variables in intersection crash occurrence. In addition to commonly considered traffic and geometric variables, examined spatial factors include local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools. The results indicate that inclusion of these factors results in significant improvement in model explanatory power, and the results also generally agree with expectation. The research illuminates the importance of spatial variables in safety research and also the negative consequences of their omissions.
Resumo:
This research assesses the potential impact of weekly weather variability on the incidence of cryptosporidiosis disease using time series zero-inflated Poisson (ZIP) and classification and regression tree (CART) models. Data on weather variables, notified cryptosporidiosis cases and population size in Brisbane were supplied by the Australian Bureau of Meteorology, Queensland Department of Health, and Australian Bureau of Statistics, respectively. Both time series ZIP and CART models show a clear association between weather variables (maximum temperature, relative humidity, rainfall and wind speed) and cryptosporidiosis disease. The time series CART models indicated that, when weekly maximum temperature exceeded 31°C and relative humidity was less than 63%, the relative risk of cryptosporidiosis rose by 13.64 (expected morbidity: 39.4; 95% confidence interval: 30.9–47.9). These findings may have applications as a decision support tool in planning disease control and risk management programs for cryptosporidiosis disease.
Resumo:
In 2008, a three-year pilot ‘pay for performance’ (P4P) program, known as ‘Clinical Practice Improvement Payment’ (CPIP) was introduced into Queensland Health (QHealth). QHealth is a large public health sector provider of acute, community, and public health services in Queensland, Australia. The organisation has recently embarked on a significant reform agenda including a review of existing funding arrangements (Duckett et al., 2008). Partly in response to this reform agenda, a casemix funding model has been implemented to reconnect health care funding with outcomes. CPIP was conceptualised as a performance-based scheme that rewarded quality with financial incentives. This is the first time such a scheme has been implemented into the public health sector in Australia with a focus on rewarding quality, and it is unique in that it has a large state-wide focus and includes 15 Districts. CPIP initially targeted five acute and community clinical areas including Mental Health, Discharge Medication, Emergency Department, Chronic Obstructive Pulmonary Disease, and Stroke. The CPIP scheme was designed around key concepts including the identification of clinical indicators that met the set criteria of: high disease burden, a well defined single diagnostic group or intervention, significant variations in clinical outcomes and/or practices, a good evidence, and clinician control and support (Ward, Daniels, Walker & Duckett, 2007). This evaluative research targeted Phase One of implementation of the CPIP scheme from January 2008 to March 2009. A formative evaluation utilising a mixed methodology and complementarity analysis was undertaken. The research involved three research questions and aimed to determine the knowledge, understanding, and attitudes of clinicians; identify improvements to the design, administration, and monitoring of CPIP; and determine the financial and economic costs of the scheme. Three key studies were undertaken to ascertain responses to the key research questions. Firstly, a survey of clinicians was undertaken to examine levels of knowledge and understanding and their attitudes to the scheme. Secondly, the study sought to apply Statistical Process Control (SPC) to the process indicators to assess if this enhanced the scheme and a third study examined a simple economic cost analysis. The CPIP Survey of clinicians elicited 192 clinician respondents. Over 70% of these respondents were supportive of the continuation of the CPIP scheme. This finding was also supported by the results of a quantitative altitude survey that identified positive attitudes in 6 of the 7 domains-including impact, awareness and understanding and clinical relevance, all being scored positive across the combined respondent group. SPC as a trending tool may play an important role in the early identification of indicator weakness for the CPIP scheme. This evaluative research study supports a previously identified need in the literature for a phased introduction of Pay for Performance (P4P) type programs. It further highlights the value of undertaking a formal risk assessment of clinician, management, and systemic levels of literacy and competency with measurement and monitoring of quality prior to a phased implementation. This phasing can then be guided by a P4P Design Variable Matrix which provides a selection of program design options such as indicator target and payment mechanisms. It became evident that a clear process is required to standardise how clinical indicators evolve over time and direct movement towards more rigorous ‘pay for performance’ targets and the development of an optimal funding model. Use of this matrix will enable the scheme to mature and build the literacy and competency of clinicians and the organisation as implementation progresses. Furthermore, the research identified that CPIP created a spotlight on clinical indicators and incentive payments of over five million from a potential ten million was secured across the five clinical areas in the first 15 months of the scheme. This indicates that quality was rewarded in the new QHealth funding model, and despite issues being identified with the payment mechanism, funding was distributed. The economic model used identified a relative low cost of reporting (under $8,000) as opposed to funds secured of over $300,000 for mental health as an example. Movement to a full cost effectiveness study of CPIP is supported. Overall the introduction of the CPIP scheme into QHealth has been a positive and effective strategy for engaging clinicians in quality and has been the catalyst for the identification and monitoring of valuable clinical process indicators. This research has highlighted that clinicians are supportive of the scheme in general; however, there are some significant risks that include the functioning of the CPIP payment mechanism. Given clinician support for the use of a pay–for-performance methodology in QHealth, the CPIP scheme has the potential to be a powerful addition to a multi-faceted suite of quality improvement initiatives within QHealth.
Analytical Solution for the Time-Fractional Telegraph Equation by the Method of Separating Variables
Resumo:
This project was a step forward in the examination and identification of key variables on the perception, decision making and action of team sport athletes through theoretical insights provided by the ecological dynamics perspective. The methodology drew on experiential knowledge of elite coaches to drive further empirical investigation into the specific task, environmental and personal constraints that shape the behaviour of athletes in specific performance contexts. The thesis has provided an effective rationale for further investigation into the emergent perception, decision making and action demanded of athletes in these unpredictable, fluent, fast-paced environments.
Resumo:
Local climate is a critical element in the design of buildings. In this paper, ten years of historical weather data in Australia's all eight capital cities are analyzed to characterize the variation profiles of climatic variables. The method of descriptive statistics is employed. Either the pattern of cumulative distribution and/or the profile of percentage distribution are used to graphically illustrate the similarity and difference between different study locations. It is found that although the weather variables vary with different locations, except for the extreme parts, there is often a good, nearly linear relation between weather variable and its cumulative percentage for the majority of middle part. The implication of these extreme parts and the slopes of the middle parts on building design is also discussed.
Resumo:
Advances in safety research—trying to improve the collective understanding of motor vehicle crash causes and contributing factors—rest upon the pursuit of numerous lines of research inquiry. The research community has focused considerable attention on analytical methods development (negative binomial models, simultaneous equations, etc.), on better experimental designs (before-after studies, comparison sites, etc.), on improving exposure measures, and on model specification improvements (additive terms, non-linear relations, etc.). One might logically seek to know which lines of inquiry might provide the most significant improvements in understanding crash causation and/or prediction. It is the contention of this paper that the exclusion of important variables (causal or surrogate measures of causal variables) cause omitted variable bias in model estimation and is an important and neglected line of inquiry in safety research. In particular, spatially related variables are often difficult to collect and omitted from crash models—but offer significant opportunities to better understand contributing factors and/or causes of crashes. This study examines the role of important variables (other than Average Annual Daily Traffic (AADT)) that are generally omitted from intersection crash prediction models. In addition to the geometric and traffic regulatory information of intersection, the proposed model includes many spatial factors such as local influences of weather, sun glare, proximity to drinking establishments, and proximity to schools—representing a mix of potential environmental and human factors that are theoretically important, but rarely used. Results suggest that these variables in addition to AADT have significant explanatory power, and their exclusion leads to omitted variable bias. Provided is evidence that variable exclusion overstates the effect of minor road AADT by as much as 40% and major road AADT by 14%.
Resumo:
In this paper, a method of separating variables is effectively implemented for solving a time-fractional telegraph equation (TFTE) in two and three dimensions. We discuss and derive the analytical solution of the TFTE in two and three dimensions with nonhomogeneous Dirichlet boundary condition. This method can be extended to other kinds of the boundary conditions.
Resumo:
Objectives: This study examines the hypothesis that a past history of heart interventions will moderate the relationship between psychosocial factors (stressful life events, social support, perceived stress, having a current partner, having a past diagnosis of depression or anxiety over the past 3 years, time pressure, education level, and the mental health index) and the presence of chest pain in a sample of older women. Design: Longitudinal survey over a 3-year period. Methods: The sample was taken from a prospective cohort study of 10,432 women initially aged between 70 and 75 years, who were surveyed in 1996 and then again in 1999. Two groups of women were identified: those reporting to have heart disease but no past history of heart interventions (i.e., coronary artery bypass graft/angioplasty) and those reporting to have heart disease with a past history of heart interventions. Results: Binary logistic regression analysis was used to show that for the women with self-reported coronary heart disease but without a past history of heart intervention, feelings of time pressure as well as the number of stressful life events experienced in the 12 months prior to 1996 were independent risk factors for the presence of chest pain, even after accounting for a range of traditional risk factors. In comparison, for the women with self-reported coronary heart disease who did report a past history of heart interventions, a diagnosis of depression in the previous 3 years was the significant independent risk factor for chest pain even after accounting for traditional risk factors. Conclusion: The results indicate that it is important to consider a history of heart interventions as a moderator of the associations between psychosocial variables and the frequency of chest pain in older women. Statement of Contribution: What is already known on this subject? Psychological factors have been shown to be independent predictors of a range of health outcomes in individuals with coronary heart disease, including the presence of chest pain. Most research has been conducted with men or with small samples of women; however, the evidence does suggest that these relationships exist in women as well as in men. What does this study add? Most studies have looked at overall relationships between psychological variables and health outcomes. The few studies that have looked at moderators have mainly examined gender as a moderator. To our knowledge, this is the first published study to examine a history of heart interventions as a moderator of the relationship between psychological variables and the presence of chest pain.
Resumo:
Evaluating the validity of formative variables has presented ongoing challenges for researchers. In this paper we use global criterion measures to compare and critically evaluate two alternative formative measures of System Quality. One model is based on the ISO-9126 software quality standard, and the other is based on a leading information systems research model. We find that despite both models having a strong provenance, many of the items appear to be non-significant in our study. We examine the implications of this by evaluating the quality of the criterion variables we used, and the performance of PLS when evaluating formative models with a large number of items. We find that our respondents had difficulty distinguishing between global criterion variables measuring different aspects of overall System Quality. Also, because formative indicators “compete with one another” in PLS, it may be difficult to develop a set of measures which are all significant for a complex formative construct with a broad scope and a large number of items. Overall, we suggest that there is cautious evidence that both sets of measures are valid and largely equivalent, although questions still remain about the measures, the use of criterion variables, and the use of PLS for this type of model evaluation.