1000 resultados para Quantum superalgebra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantum dot - plasmon waveguide systems are of interest for the active control of plasmon propagation, and consequently, the development of active nanophotonic devices such as nano-sized optical transistors. This paper is concerned with how varying aspect ratio of the waveguide crosssection affects the quantum dot - plasmon coupling. We compare a stripe waveguide with an equivalent nanowire, illustrating that both waveguides have a similar coupling strength to a nearby quantum dot for small waveguide cross-section, thereby indicating that stripe lithographic waveguides have strong potential use in quantum dot –plasmon waveguide systems. We also demonstrate that changing the aspect ratio of both stripe and wire waveguides can increase the spontaneous emission rate of the quantum dot into the plasmon mode, by up to a factor of five. The results of this paper will contribute to the optimisation of quantum dot - plasmon waveguide systems and help pave the way for the development of active nanophotonics devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This position paper provides an overview of work conducted and an outlook of future directions within the field of Information Retrieval (IR) that aims to develop novel models, methods and frameworks inspired by Quantum Theory (QT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider the concept combination ‘pet human’. In word association experiments, human subjects produce the associate ‘slave’ in relation to this combination. The striking aspect of this associate is that it is not produced as an associate of ‘pet’, or ‘human’ in isolation. In other words, the associate ‘slave’ seems to be emergent. Such emergent associations sometimes have a creative character and cognitive science is largely silent about how we produce them. Departing from a dimensional model of human conceptual space, this article will explore concept combinations, and will argue that emergent associations are a result of abductive reasoning within conceptual space, that is, below the symbolic level of cognition. A tensor-based approach is used to model concept combinations allowing such combinations to be formalized as interacting quantum systems. Free association norm data is used to motivate the underlying basis of the conceptual space. It is shown by analogy how some concept combinations may behave like quantum-entangled (non-separable) particles. Two methods of analysis were presented for empirically validating the presence of non-separable concept combinations in human cognition. One method is based on quantum theory and another based on comparing a joint (true theoretic) probability distribution with another distribution based on a separability assumption using a chi-square goodness-of-fit test. Although these methods were inconclusive in relation to an empirical study of bi-ambiguous concept combinations, avenues for further refinement of these methods are identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As computers approach the physical limits of information storable in memory, new methods will be needed to further improve information storage and retrieval. We propose a quantum inspired vector based approach, which offers a contextually dependent mapping from the subsymbolic to the symbolic representations of information. If implemented computationally, this approach would provide exceptionally high density of information storage, without the traditionally required physical increase in storage capacity. The approach is inspired by the structure of human memory and incorporates elements of Gardenfors’ Conceptual Space approach and Humphreys et al.’s matrix model of memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositionality is a frequently made assumption in linguistics, and yet many human subjects reveal highly non-compositional word associations when confronted with novel concept combinations. This article will show how a non-compositional account of concept combinations can be supplied by modelling them as interacting quantum systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We utilise the well-developed quantum decision models known to the QI community to create a higher order social decision making model. A simple Agent Based Model (ABM) of a society of agents with changing attitudes towards a social issue is presented, where the private attitudes of individuals in the system are represented using a geometric structure inspired by quantum theory. We track the changing attitudes of the members of that society, and their resulting propensities to act, or not, in a given social context. A number of new issues surrounding this "scaling up" of quantum decision theories are discussed, as well as new directions and opportunities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is a theoretical investigation into the coupling of a single excited quantum emitter to the plasmon mode of a V groove waveguide. The V groove waveguide consists of a triangular channel milled in gold and the emitter is modeled as a dipole emitter, and could represent a quantum dot, nitrogen vacancy in diamond, or similar. In this work the dependence of coupling efficiency of emitter to plasmon mode is determined for various geometrical parameters of the emitter-waveguide system. Using the finite element method, the effect on coupling efficiency of the emitter position and orientation, groove angle, groove depth, and tip radius, is studied in detail. We demonstrate that all parameters, with the exception of groove depth, have a significant impact on the attainable coupling efficiency. Understanding the effect of various geometrical parameters on the coupling between emitters and the plasmonic mode of the waveguide is essential for the design and optimization of quantum dot–V groove devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Key establishment is a crucial primitive for building secure channels in a multi-party setting. Without quantum mechanics, key establishment can only be done under the assumption that some computational problem is hard. Since digital communication can be easily eavesdropped and recorded, it is important to consider the secrecy of information anticipating future algorithmic and computational discoveries which could break the secrecy of past keys, violating the secrecy of the confidential channel. Quantum key distribution (QKD) can be used generate secret keys that are secure against any future algorithmic or computational improvements. QKD protocols still require authentication of classical communication, although existing security proofs of QKD typically assume idealized authentication. It is generally considered folklore that QKD when used with computationally secure authentication is still secure against an unbounded adversary, provided the adversary did not break the authentication during the run of the protocol. We describe a security model for quantum key distribution extending classical authenticated key exchange (AKE) security models. Using our model, we characterize the long-term security of the BB84 QKD protocol with computationally secure authentication against an eventually unbounded adversary. By basing our model on traditional AKE models, we can more readily compare the relative merits of various forms of QKD and existing classical AKE protocols. This comparison illustrates in which types of adversarial environments different quantum and classical key agreement protocols can be secure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, "contextuality", is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, "entanglement", allows cognitive phenomena to be modelled in non-reductionist ways. Employing these principles drawn from quantum theory allows us to view human cognition and decision in a totally new light...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The term “vagueness” describes a property of natural concepts, which normally have fuzzy boundaries, admit borderline cases, and are susceptible to Zeno’s sorites paradox. We will discuss the psychology of vagueness, especially experiments investigating the judgment of borderline cases and contradictions. In the theoretical part, we will propose a probabilistic model that describes the quantitative characteristics of the experimental finding and extends Alxatib’s and Pelletier’s (2011) theoretical analysis. The model is based on a Hopfield network for predicting truth values. Powerful as this classical perspective is, we show that it falls short of providing an adequate coverage of the relevant empirical results. In the final part, we will argue that a substan- tial modification of the analysis put forward by Alxatib and Pelletier and its probabilistic pendant is needed. The proposed modification replaces the standard notion of probabilities by quantum probabilities. The crucial phenomenon of borderline contradictions can be explained then as a quantum interference phenomenon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-time program is a hypothetical device by which a user may evaluate a circuit on exactly one input of his choice, before the device self-destructs. One-time programs cannot be achieved by software alone, as any software can be copied and re-run. However, it is known that every circuit can be compiled into a one-time program using a very basic hypothetical hardware device called a one-time memory. At first glance it may seem that quantum information, which cannot be copied, might also allow for one-time programs. But it is not hard to see that this intuition is false: one-time programs for classical or quantum circuits based solely on quantum information do not exist, even with computational assumptions. This observation raises the question, "what assumptions are required to achieve one-time programs for quantum circuits?" Our main result is that any quantum circuit can be compiled into a one-time program assuming only the same basic one-time memory devices used for classical circuits. Moreover, these quantum one-time programs achieve statistical universal composability (UC-security) against any malicious user. Our construction employs methods for computation on authenticated quantum data, and we present a new quantum authentication scheme called the trap scheme for this purpose. As a corollary, we establish UC-security of a recent protocol for delegated quantum computation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we modeled a quantum dot at near proximity to a gap plasmon waveguide to study the quantum dot-plasmon interactions. Assuming that the waveguide is single mode, this paper is concerned about the dependence of spontaneous emission rate of the quantum dot on waveguide dimensions such as width and height. We compare coupling efficiency of a gap waveguide with symmetric configuration and asymmetric configuration illustrating that symmetric waveguide has a better coupling efficiency to the quantum dot. We also demonstrate that optimally placed quantum dot near a symmetric waveguide with 50 nm x 50 nm cross section can capture 80% of the spontaneous emission into a guided plasmon mode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose to use a simple and effective way to achieve secure quantum direct secret sharing. The proposed scheme uses the properties of fountain codes to allow a realization of the physical conditions necessary for the implementation of no-cloning principle for eavesdropping-check and authentication. In our scheme, to achieve a variety of security purposes, nonorthogonal state particles are inserted in the transmitted sequence carrying the secret shares to disorder it. However, the positions of the inserted nonorthogonal state particles are not announced directly, but are obtained by sending degrees and positions of a sequence that are pre-shared between Alice and each Bob. Moreover, they can confirm that whether there exists an eavesdropper without exchanging classical messages. Most importantly, without knowing the positions of the inserted nonorthogonal state particles and the sequence constituted by the first particles from every EPR pair, the proposed scheme is shown to be secure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A known limitation of the Probability Ranking Principle (PRP) is that it does not cater for dependence between documents. Recently, the Quantum Probability Ranking Principle (QPRP) has been proposed, which implicitly captures dependencies between documents through “quantum interference”. This paper explores whether this new ranking principle leads to improved performance for subtopic retrieval, where novelty and diversity is required. In a thorough empirical investigation, models based on the PRP, as well as other recently proposed ranking strategies for subtopic retrieval (i.e. Maximal Marginal Relevance (MMR) and Portfolio Theory(PT)), are compared against the QPRP. On the given task, it is shown that the QPRP outperforms these other ranking strategies. And unlike MMR and PT, one of the main advantages of the QPRP is that no parameter estimation/tuning is required; making the QPRP both simple and effective. This research demonstrates that the application of quantum theory to problems within information retrieval can lead to significant improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we introduce a formalization of Logical Imaging applied to IR in terms of Quantum Theory through the use of an analogy between states of a quantum system and terms in text documents. Our formalization relies upon the Schrodinger Picture, creating an analogy between the dynamics of a physical system and the kinematics of probabilities generated by Logical Imaging. By using Quantum Theory, it is possible to model more precisely contextual information in a seamless and principled fashion within the Logical Imaging process. While further work is needed to empirically validate this, the foundations for doing so are provided.