905 resultados para Quantum computational complexity
Resumo:
The Curry-Howard isomorphism is the idea that proofs in natural deduction can be put in correspondence with lambda terms in such a way that this correspondence is preserved by normalization. The concept can be extended from Intuitionistic Logic to other systems, such as Linear Logic. One of the nice conseguences of this isomorphism is that we can reason about functional programs with formal tools which are typical of proof systems: such analysis can also include quantitative qualities of programs, such as the number of steps it takes to terminate. Another is the possiblity to describe the execution of these programs in terms of abstract machines. In 1990 Griffin proved that the correspondence can be extended to Classical Logic and control operators. That is, Classical Logic adds the possiblity to manipulate continuations. In this thesis we see how the things we described above work in this larger context.
Resumo:
In this thesis we provide a characterization of probabilistic computation in itself, from a recursion-theoretical perspective, without reducing it to deterministic computation. More specifically, we show that probabilistic computable functions, i.e., those functions which are computed by Probabilistic Turing Machines (PTM), can be characterized by a natural generalization of Kleene's partial recursive functions which includes, among initial functions, one that returns identity or successor with probability 1/2. We then prove the equi-expressivity of the obtained algebra and the class of functions computed by PTMs. In the the second part of the thesis we investigate the relations existing between our recursion-theoretical framework and sub-recursive classes, in the spirit of Implicit Computational Complexity. More precisely, endowing predicative recurrence with a random base function is proved to lead to a characterization of polynomial-time computable probabilistic functions.
Resumo:
Nonlinear analysis tools for studying and characterizing the dynamics of physiological signals have gained popularity, mainly because tracking sudden alterations of the inherent complexity of biological processes might be an indicator of altered physiological states. Typically, in order to perform an analysis with such tools, the physiological variables that describe the biological process under study are used to reconstruct the underlying dynamics of the biological processes. For that goal, a procedure called time-delay or uniform embedding is usually employed. Nonetheless, there is evidence of its inability for dealing with non-stationary signals, as those recorded from many physiological processes. To handle with such a drawback, this paper evaluates the utility of non-conventional time series reconstruction procedures based on non uniform embedding, applying them to automatic pattern recognition tasks. The paper compares a state of the art non uniform approach with a novel scheme which fuses embedding and feature selection at once, searching for better reconstructions of the dynamics of the system. Moreover, results are also compared with two classic uniform embedding techniques. Thus, the goal is comparing uniform and non uniform reconstruction techniques, including the one proposed in this work, for pattern recognition in biomedical signal processing tasks. Once the state space is reconstructed, the scheme followed characterizes with three classic nonlinear dynamic features (Largest Lyapunov Exponent, Correlation Dimension and Recurrence Period Density Entropy), while classification is carried out by means of a simple k-nn classifier. In order to test its generalization capabilities, the approach was tested with three different physiological databases (Speech Pathologies, Epilepsy and Heart Murmurs). In terms of the accuracy obtained to automatically detect the presence of pathologies, and for the three types of biosignals analyzed, the non uniform techniques used in this work lightly outperformed the results obtained using the uniform methods, suggesting their usefulness to characterize non-stationary biomedical signals in pattern recognition applications. On the other hand, in view of the results obtained and its low computational load, the proposed technique suggests its applicability for the applications under study.
Resumo:
LHE (logarithmical hopping encoding) is a computationally efficient image compression algorithm that exploits the Weber–Fechner law to encode the error between colour component predictions and the actual value of such components. More concretely, for each pixel, luminance and chrominance predictions are calculated as a function of the surrounding pixels and then the error between the predictions and the actual values are logarithmically quantised. The main advantage of LHE is that although it is capable of achieving a low-bit rate encoding with high quality results in terms of peak signal-to-noise ratio (PSNR) and image quality metrics with full-reference (FSIM) and non-reference (blind/referenceless image spatial quality evaluator), its time complexity is O( n) and its memory complexity is O(1). Furthermore, an enhanced version of the algorithm is proposed, where the output codes provided by the logarithmical quantiser are used in a pre-processing stage to estimate the perceptual relevance of the image blocks. This allows the algorithm to downsample the blocks with low perceptual relevance, thus improving the compression rate. The performance of LHE is especially remarkable when the bit per pixel rate is low, showing much better quality, in terms of PSNR and FSIM, than JPEG and slightly lower quality than JPEG-2000 but being more computationally efficient.
Resumo:
"UIUCDCS-R-75-716"
Resumo:
How useful is a quantum dynamical operation for quantum information processing? Motivated by this question, we investigate several strength measures quantifying the resources intrinsic to a quantum operation. We develop a general theory of such strength measures, based on axiomatic considerations independent of state-based resources. The power of this theory is demonstrated with applications to quantum communication complexity, quantum computational complexity, and entanglement generation by unitary operations.
Resumo:
Depuis l’introduction de la mécanique quantique, plusieurs mystères de la nature ont trouvé leurs explications. De plus en plus, les concepts de la mécanique quantique se sont entremêlés avec d’autres de la théorie de la complexité du calcul. De nouvelles idées et solutions ont été découvertes et élaborées dans le but de résoudre ces problèmes informatiques. En particulier, la mécanique quantique a secoué plusieurs preuves de sécurité de protocoles classiques. Dans ce m´emoire, nous faisons un étalage de résultats récents de l’implication de la mécanique quantique sur la complexité du calcul, et cela plus précisément dans le cas de classes avec interaction. Nous présentons ces travaux de recherches avec la nomenclature des jeux à information imparfaite avec coopération. Nous exposons les différences entre les théories classiques, quantiques et non-signalantes et les démontrons par l’exemple du jeu à cycle impair. Nous centralisons notre attention autour de deux grands thèmes : l’effet sur un jeu de l’ajout de joueurs et de la répétition parallèle. Nous observons que l’effet de ces modifications a des conséquences très différentes en fonction de la théorie physique considérée.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
What is the computational power of a quantum computer? We show that determining the output of a quantum computation is equivalent to counting the number of solutions to an easily computed set of polynomials defined over the finite field Z(2). This connection allows simple proofs to be given for two known relationships between quantum and classical complexity classes, namely BQP subset of P-#P and BQP subset of PP.
Resumo:
In this paper, we use the quantum Jensen-Shannon divergence as a means of measuring the information theoretic dissimilarity of graphs and thus develop a novel graph kernel. In quantum mechanics, the quantum Jensen-Shannon divergence can be used to measure the dissimilarity of quantum systems specified in terms of their density matrices. We commence by computing the density matrix associated with a continuous-time quantum walk over each graph being compared. In particular, we adopt the closed form solution of the density matrix introduced in Rossi et al. (2013) [27,28] to reduce the computational complexity and to avoid the cumbersome task of simulating the quantum walk evolution explicitly. Next, we compare the mixed states represented by the density matrices using the quantum Jensen-Shannon divergence. With the quantum states for a pair of graphs described by their density matrices to hand, the quantum graph kernel between the pair of graphs is defined using the quantum Jensen-Shannon divergence between the graph density matrices. We evaluate the performance of our kernel on several standard graph datasets from both bioinformatics and computer vision. The experimental results demonstrate the effectiveness of the proposed quantum graph kernel.
Resumo:
A number of recent studies have investigated the introduction of decoherence in quantum walks and the resulting transition to classical random walks. Interestingly,it has been shown that algorithmic properties of quantum walks with decoherence such as the spreading rate are sometimes better than their purely quantum counterparts. Not only quantum walks with decoherence provide a generalization of quantum walks that naturally encompasses both the quantum and classical case, but they also give rise to new and different probability distribution. The application of quantum walks with decoherence to large graphs is limited by the necessity of evolving state vector whose sizes quadratic in the number of nodes of the graph, as opposed to the linear state vector of the purely quantum (or classical) case. In this technical report,we show how to use perturbation theory to reduce the computational complexity of evolving a continuous-time quantum walk subject to decoherence. More specifically, given a graph over n nodes, we show how to approximate the eigendecomposition of the n2×n2 Lindblad super-operator from the eigendecomposition of the n×n graph Hamiltonian.
Resumo:
We address the issue of complexity for vector quantization (VQ) of wide-band speech LSF (line spectrum frequency) parameters. The recently proposed switched split VQ (SSVQ) method provides better rate-distortion (R/D) performance than the traditional split VQ (SVQ) method, even at the requirement of lower computational complexity. but at the expense of much higher memory. We develop the two stage SVQ (TsSVQ) method, by which we gain both the memory and computational advantages and still retain good R/D performance. The proposed TsSVQ method uses a full dimensional quantizer in its first stage for exploiting all the higher dimensional coding advantages and then, uses an SVQ method for quantizing the residual vector in the second stage so as to reduce the complexity. We also develop a transform domain residual coding method in this two stage architecture such that it further reduces the computational complexity. To design an effective residual codebook in the second stage, variance normalization of Voronoi regions is carried out which leads to the design of two new methods, referred to as normalized two stage SVQ (NTsSVQ) and normalized two stage transform domain SVQ (NTsTrSVQ). These two new methods have complimentary strengths and hence, they are combined in a switched VQ mode which leads to the further improvement in R/D performance, but retaining the low complexity requirement. We evaluate the performances of new methods for wide-band speech LSF parameter quantization and show their advantages over established SVQ and SSVQ methods.
Resumo:
We develop a two stage split vector quantization method with optimum bit allocation, for achieving minimum computational complexity. This also results in much lower memory requirement than the recently proposed switched split vector quantization method. To improve the rate-distortion performance further, a region specific normalization is introduced, which results in 1 bit/vector improvement over the typical two stage split vector quantizer, for wide-band LSF quantization.