940 resultados para Quantitative Real-time Pcr


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability to rapidly detect circulating small RNAs, in particular microRNAs (miRNAs), would further increase their already established potential as biomarkers in a range of conditions. One rate-limiting factor is the time taken to perform quantitative real time PCR amplification. We therefore evaluated the ability of a novel thermal cycler to perform this step in less than 10 minutes. Quantitative PCR was performed on an xxpress® thermal cycler (BJS Biotechnologies, Perivale, UK), which employs a resistive heating system and forced air cooling to achieve thermal ramp rates of 10 °C/s, and a conventional peltier-controlled LightCycler 480 system (Roche, Basel, Switzerland) ramping at 4.8 °C/s. The threshold cycle (Ct) for detection of 18S rDNA from a standard genomic DNA sample was significantly more variable across the block (F-test, p=2.4x10-25) for the xxpress (20.01±0.47SD) than the LightCycler (19.87±0.04SD). RNA was extracted from human plasma, reverse transcribed and a panel of miRNAs amplified and detected using SYBR green (Kapa Biosystems, Wilmington, Ma, USA). The sensitivity of both systems was broadly comparable and both detected a panel of miRNAs reliably and indicated similar relative abundances. The xxpress thermal cycler facilitates rapid qPCR detection of small RNAs and brings point-of care diagnostics based upon circulating miRNAs a step closer to reality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Few reports of the utilization of an accurate, cost-effective means for measuring HPV oncogene transcripts have been published. Several papers have reported the use of relative quantitation or more expensive Taqman methods. Here, we report a method of absolute quantitative real-time PCR utilizing SYBR-green fluorescence for the measurement of HPV E7 expression in cervical cytobrush specimens. RESULTS: The construction of a standard curve based on the serial dilution of an E7-containing plasmid was the key for being able to accurately compare measurements between cervical samples. The assay was highly reproducible with an overall coefficient of variation of 10.4%. CONCLUSION: The use of highly reproducible and accurate SYBR-based real-time polymerase chain reaction (PCR) assays instead of performing Taqman-type assays allows low-cost, high-throughput analysis of viral mRNA expression. The development of such assays will help in refining the current screening programs for HPV-related carcinomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific traditional plate count method and real-time PCR systems based on SYBR Green I and TaqMan technologies using a specific primer pair and probe for amplification of iap-gene were used for quantitative assay of Listeria monocytogenes in seven decimal serial dilution series of nutrient broth and milk samples containing 1.58 to 1.58×107 cfu /ml and the real-time PCR methods were compared with the plate count method with respect to accuracy and sensitivity. In this study, the plate count method was performed using surface-plating of 0.1 ml of each sample on Palcam Agar. The lowest detectable level for this method was 1.58×10 cfu/ml for both nutrient broth and milk samples. Using purified DNA as a template for generation of standard curves, as few as four copies of the iap-gene could be detected per reaction with both real-time PCR assays, indicating that they were highly sensitive. When these real-time PCR assays were applied to quantification of L. monocytogenes in decimal serial dilution series of nutrient broth and milk samples, 3.16×10 to 3.16×105 copies per reaction (equals to 1.58×103 to 1.58×107 cfu/ml L. monocytogenes) were detectable. As logarithmic cycles, for Plate Count and both molecular assays, the quantitative results of the detectable steps were similar to the inoculation levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex net-Work of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha, fusion proteins have been reported to act as part of a repressor complex during myelold cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ectrodactyly-ectodermal dysplasiaclefting syndrome is a rare autosomal dominant disorder caused by heterozygous mutations in the p63 gene, a transcription factor belonging to the p53 family. The majority of cases of ectrodactyly-ectodermal dysplasia syndrome are caused by de novo mutations and are therefore sporadic in approximately 60% of patients. The substitution of arginine to histidine (R279H), due to a c.836G>A mutation in exon 7 of the p63 gene, represents 55% of the identified mutations and is considered a mutational hot spot. A quantitative and sensitive real-time PCR was performed to quantify both wild-type and R279H alleles in DNA extracted from peripheral blood and RNA from cultured epithelial cells. Standard curves were constructed for both wild-type and mutant probes. The sensitivity of the assay was determined by generating serial dilutions of the DNA isolated from heterozygous patients (50% of alleles mutated) with wild-type DNA, thus obtaining decreasing percentages of p63 R279H mutant allele (50%, 37.5%, 25%, 12.5%, 10%, 7.5%, 5%, 2.5%, and 0.0%). The assay detected up to 1% of the mutant p63. The high sensitivity of the assay is of particular relevance to prenatal diagnosis and counseling and to detect therapeutic effects of drug treatment or gene therapy aimed at reducing the amount of mutated p63. © 2012 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute promyelocytic leukemia (APL) is associated with a reciprocal and balanced translocation involving the retinoic acid receptor-alpha (RARalpha). All-trans retinoic acid (ATRA) is used to treat APL and is a potent morphogen that regulates HOX gene expression in embryogenesis and organogenesis. HOX genes are also involved in hematopoiesis and leukemogenesis. Thirty-nine mammalian HOX genes have been identified and classified into 13 paralogous groups clustered on 4 chromosomes. They encode a complex network of transcription regulatory proteins whose precise targets remain poorly understood. The overall function of the network appears to be dictated by gene dosage. To investigate the mechanisms involved in HOX gene regulation in hematopoiesis and leukemogenesis by precise measurement of individual HOX genes, a small-array real-time HOX (SMART-HOX) quantitative polymerase chain reaction (PCR) platform was designed and validated. Application of SMART-HOX to 16 APL bone marrow samples revealed a global down-regulation of 26 HOX genes compared with normal controls. HOX gene expression was also altered during differentiation induced by ATRA in the PML-RARalpha(+) NB4 cell line. PML-RARalpha fusion proteins have been reported to act as part of a repressor complex during myeloid cell differentiation, and a model linking HOX gene expression to this PML-RARalpha repressor complex is now proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genes on the X chromosome are known to be responsible for more than 200 hereditary diseases. After IVF, the simple selection of embryo sex before uterine transfer can prevent the occurrence of affected offspring among couples at risk for these genetic disorders. The aim of this investigation was to develop a rapid method of preimplantation genetic diagnosis (PGD) using real-time polymerase chain reaction (PCR) for the sexing of human embryos, and to compare it to the fluorescence in-situ hybridization technique, considered to be the gold standard. After biopsies were obtained from 40 surplus non-viable embryos for transfer, a total of 98 blastomeres were analysed. It was possible to analyse 24 embryos (60%) by both techniques, generating a total of 70 blastomeres (35 per technique), white 28 blastomeres from 16 embryos (40%) were analysed only by real-time PCR. A rapid and safe method was developed in the present study for the sexual diagnosis of a single human cell (blastomere and buccal cell) using the emerging technology of real-time PCR. (C) 2009, Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to optimize an internal control to improve SYBR-Green-based qPCR to amplify/detect the BoHV-5 US9 gene in bovine embryos produced invitro and experimentally exposed to the virus. We designed an SYBR-Green-based binding assay that is quick to perform, reliable, easily optimized and compares well with the published assay. Herein we demonstrated its general applicability to detect BoHV-5 US9 gene in bovine embryos produced invitro experimentally exposed to BoHV-5. In order to validate the assay, three different reference genes were tested; and the histone 2a gene was shown to be the most adequate for normalizing the qPCR reaction, by considering melting and standard curves ( p<0.05). On the other hand, no differences were found in the development of bovine embryos invitro whether they were exposed to BoHV-5 reference and field strains comparing to unexposed embryos. The developed qPCR assay may have important field applications as it provides an accurate BoHV-5 US9 gene detection using a proven reference gene and is considerably less expensive than the TaqMan qPCR currently employed in sanitary programs. © 2013 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proportion of Plasmodium vivax-infected subjects that carry mature gametocytes, and thus are potentially infectious, remains poorly characterized in endemic settings. Here, we describe a quantitative reverse transcriptase (RI) real-time PCR (qRT-PCR) that targets transcripts of the mature gametocyte-specific pvs25 gene. We found mature gametocytes in 42 of 44 (95.4%) P. vivax infections diagnosed during an ongoing cohort study in northwestern Brazil. SYBR green qRT-PCR was more sensitive than a conventional RT-PCR that targets the same gene. Molecular detection of gametocytes failed, however, when dried bloodspots were used for RNA isolation and complementary DNA synthesis. Estimating the number of pvs25 gene transcripts allowed for examining the potential infectiousness of gametocyte carriers in a quantitative way. We found that most (61.9%) gametocyte carriers were either asymptomatic or had subpatent parasitemias and would have been missed by routine malaria control strategies. However, potentially undiagnosed gametocyte carriers usually had low-density infections and contributed a small fraction (up to 4%) to the overall gametocyte burden in the community. Further studies are required to determine the relative contribution to malaria transmission of long-lasting but low-density gametocytemias in asymptomatic carriers that are left undiagnosed and untreated. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Urinary tract infections (UTI) are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical. Aim To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast®) and to compare the results with dipslide and microbiological culture. Design of study Pilot study with prospectively collected urine samples. Setting University hospital. Methods 82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast®) was performed in all samples. Results 61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%), 477/492 (97%) and 238/246 (97%), respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results. Conclusion The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the use of multiplex real-time PCR for detection and quantification of Campylobacter jejuni and Campylobacter coli on broiler carcass neck skin samples collected during 2008 from slaughterhouses in Switzerland. Results from an established TaqMan assay based on two different targets (hipO and ceuE for C. jejuni and C. coli, respectively) were corroborated with data from a newly developed assay based on a single-nucleotide polymorphism in the fusA gene, which allows differentiation between C. jejuni and C. coli. Both multiplex real-time PCRs were applied simultaneously for direct detection, differentiation, and quantification of Campylobacter from 351 neck skin samples and compared with culture methods. There was good correlation in detection and enumeration between real-time PCR results and quantitative culture, with real-time PCR being more sensitive. Overall, 251 (71.5%) of the samples were PCR positive for Campylobacter, with 211 (60.1%) in the hipO-ceuE assays, 244 (69.5%) in the fusA assay, and 204 (58.1%) of them being positive in both PCR assays. Thus, the fusA assay was similarly sensitive to the enrichment culture (72.4% positive); however, it is faster and allows for quantification. In addition, real-time PCR allowed for species differentiation; roughly 60% of positive samples contained C. jejuni, less than 10% C. coli, and more than 30% contained both species. Real-time PCR proved to be a suitable method for direct detection, quantification, and differentiation of Campylobacter from carcasses, and could permit time-efficient surveillance of these zoonotic agents.