573 resultados para QCD sumrules
Resumo:
The factorization theorem for exclusive processes in perturbative QCD predicts the behavior of the pion electromagnetic form factor F(t) at asymptotic spacelike momenta t(= -Q(2)) < 0. We address the question of the onset energy using a suitable mathematical framework of analytic continuation, which uses as input the phase of the form factor below the first inelastic threshold, known with great precision through the Fermi-Watson theorem from pi pi elastic scattering, and the modulus measured from threshold up to 3 GeV by the BABAR Collaboration. The method leads to almost model-independent upper and lower bounds on the spacelike form factor. Further inclusion of the value of the charge radius and the experimental value at -2.45 GeV2 measured at JLab considerably increases the strength of the bounds in the region Q(2) less than or similar to 10 GeV2, excluding the onset of the asymptotic perturbative QCD regime for Q(2) < 7 GeV2. We also compare the bounds with available experimental data and with several theoretical models proposed for the low and intermediate spacelike region.
Resumo:
Nonextremal solution with warped resolved-deformed conifold background is important to study the infrared limit of large N thermal QCD. Earlier works in this direction have not taken into account all the backreactions on the geometry, namely from the branes, fluxes, and black-hole carefully. In the present work we make some progress in this direction by solving explicitly the supergravity equations of motions in the presence of the backreaction from the black hole. The backreactions from the branes and the fluxes on the other hand and to the order that we study, are comparatively suppressed. Our analysis reveal, among other things, how the resolution parameter would depend on the horizon radius and how the renormalization group flows of the coupling constants should be understood in these scenarios, including their effects on the background three-form fluxes. We also study the effect of switching on a chemical potential in the background and, in a particularly simplified scenario, compute the actual value of the chemical potential for our case.
Resumo:
We examine the large-order behavior of a recently proposed renormalization-group-improved expansion of the Adler function in perturbative QCD, which sums in an analytically closed form the leading logarithms accessible from renormalization-group invariance. The expansion is first written as an effective series in powers of the one-loop coupling, and its leading singularities in the Borel plane are shown to be identical to those of the standard ``contour-improved'' expansion. Applying the technique of conformal mappings for the analytic continuation in the Borel plane, we define a class of improved expansions, which implement both the renormalization-group invariance and the knowledge about the large-order behavior of the series. Detailed numerical studies of specific models for the Adler function indicate that the new expansions have remarkable convergence properties up to high orders. Using these expansions for the determination of the strong coupling from the hadronic width of the tau lepton we obtain, with a conservative estimate of the uncertainty due to the nonperturbative corrections, alpha(s)(M-tau(2)) = 0.3189(-0.0151)(+0.0173), which translates to alpha(s)(M-Z(2)) = 0.1184(-0.0018)(+0.0021). DOI: 10.1103/PhysRevD.87.014008
Resumo:
We describe our kt-resummation model for total cross-sections and show its application to pp and ¯pp scattering. The model uses mini-jets to drive the rise of the cross-section and soft gluon resummation in the infrared region to transform the violent rise of the mini-jet cross-section into a logarithmic behaviour in agreement with the Froissart bound.
Resumo:
The moments of the hadronic spectral functions are of interest for the extraction of the strong coupling alpha(s) and other QCD parameters from the hadronic decays of the tau lepton. Motivated by the recent analyses of a large class of moments in the standard fixed-order and contour-improved perturbation theories, we consider the perturbative behavior of these moments in the framework of a QCD nonpower perturbation theory, defined by the technique of series acceleration by conformal mappings, which simultaneously implements renormalization-group summation and has a tame large-order behavior. Two recently proposed models of the Adler function are employed to generate the higher-order coefficients of the perturbation series and to predict the exact values of the moments, required for testing the properties of the perturbative expansions. We show that the contour-improved nonpower perturbation theories and the renormalization-group-summed nonpower perturbation theories have very good convergence properties for a large class of moments of the so-called ``reference model,'' including moments that are poorly described by the standard expansions. The results provide additional support for the plausibility of the description of the Adler function in terms of a small number of dominant renormalons.
Resumo:
We use general arguments to show that colored QCD states when restricted to gauge invariant local observables are mixed. This result has important implications for confinement: a pure colorless state can never evolve into two colored states by unitary evolution. Furthermore, the mean energy in such a mixed colored state is infinite. Our arguments are confirmed in a matrix model for QCD that we have developed using the work of Narasimhan and Ramadas(3) and Singer.(2) This model, a (0 + 1)-dimensional quantum mechanical model for gluons free of divergences and capturing important topological aspects of QCD, is adapted to analytical and numerical work. It is also suitable to work on large N QCD. As applications, we show that the gluon spectrum is gapped and also estimate some low-lying levels for N = 2 and 3 (colors). Incidentally the considerations here are generic and apply to any non-Abelian gauge theory.
Resumo:
Gribov's observation that global gauge fixing is impossible has led to suggestions that there may be a deep connection between gauge fixing and confinement. We find an unexpected relation between the topological nontriviality of the gauge bundle and colored states in SU(N) Yang-Mills theory, and show that such states are necessarily impure. We approximate QCD by a rectangular matrix model that captures the essential topological features of the gauge bundle, and demonstrate the impure nature of colored states explicitly. Our matrix model also allows the inclusion of the QCD theta-term, as well as to perform explicit computations of low-lying glueball masses. This mass spectrum is gapped. Since an impure state cannot evolve to a pure one by a unitary transformation, our result shows that the solution to the confinement problem in pure QCD is fundamentally quantum information-theoretic.
Resumo:
Neste trabalho, foram calculados os fatores de forma e as constantes de acoplamento dos vértices mesônicos J/ψ DsDs, J/ψ Ds*Ds e J/ψ Ds*Ds*usando a técnica das regras de soma da QCD (RSQCD) até a ordem 5 da OPE. Estes três vértices estão envolvidos em algumas das numerosas hipóteses que tentam explicar a estrutura interna de alguns mésons charmosos exóticos que começaram a ser observados a partir de 2003. Tais mésons não se encaixam no espectro do charmonium e/ou apresentam números quânticos exóticos dentro do modelo CQM (constituent quark model). Um exemplo é o méson Y(4140), cujo decaimento observado é no par J/ψφ enquanto o esperado seria que tivesse decaimento predominante em mésons com open charm, devido à sua massa. Uma das propostas para se entender este méson consiste em estudá-lo como um estado molecular Ds*ar{D}s*, de modo que seu decaimento seria Y(4140) → Ds* ar{D}s* → J/ψφ. Neste processo, aparecerão os vértices de interação estudados neste trabalho, de maneira que o conhecimento mais preciso de seus fatores de forma e de suas constantes de acoplamento pode beneficiar a compreensão sobre a constituição fundamental do Y(4140) assim como a de outros novos estados como o X(4350), Y(4274) e Y(4660) por exemplo. Foram considerados neste trabalho, todos os casos off-shell possíveis para cada um dos três vértices, obtendo assim dois fatores de forma distintos para o vértice J/ψ DsDs, três para o vértice J/ψ Ds*Ds e dois para o vértice J/ψ Ds* Ds*. Nestes três vértices, os fatores de forma para o caso J/ψ off-shell foram bem ajustados por curvas monopolares enquanto os casos Ds e Ds* foram ajustados por curvas exponenciais, o que está de acordo com o comportamento encontrado em trabalhos anteriores do grupo. Os cálculos das constantes de acoplamento tiveram como resultados: g_{J/ψ Ds Ds} = 5.98^{+0.67}_{ -0.58}, g_{J/ψ D*s Ds} = 4.30_{+0.41}^{-0.35}GeV^{-1} e g_{J/ψ Ds* Ds*} = 7.47^{+1.04}_{-0.71}, resultados estes que estão compatíveis com os trabalhos anteriores que utilizaram as RSQCD para o cálculo das constantes de acoplamento dos vértices J/ψ D(*)D(*).
Resumo:
简要回顾了量子色动力学求和规则在计算s夸克质量方面的应用。结合Dominguez,Gend和Paver的工作,重新考虑渐近自由阈以下的谱函数后,计算了s夸克的质量,得到s夸克的跑动质量-ms(1 GeV)=219 MeV。讨论了影响计算结果精度的可能因素。
Resumo:
量子色动力学(QCD)求和规则是强子物理研究中的一种重要的非微扰方法,已经成为强子物理与核物理研究中有力的工具。简单介绍了QCD求和规则的基本概念、方法与应用,特别讨论了QCD求和规则近年来的发展和与之相关的一些前沿问题。
Resumo:
Deconfinement phase transition and neutrino trapping in (proto)neutron star matter are investigated in a chiral hadronic model (also referred to as the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. We include a perturbative QCD correction parameter alpha(s) in the CFL quark matter equation of states. It is shown that the CFL quark core with K-0 condensation forms in neutron star matter with the large value of alpha(s). If the small value of alpha(s) is taken, hyperons suppress the CFL quark phase and the HP is dominant in the high-density region of (proto)neutron star matter. Neutrino trapping makes the fraction of the CFL quark matter decrease compared with those without neutrino trapping. Moreover, increasing the QCD correction parameter alpha(s) or decreasing the bag constant B and the strange quark mass m(s) can make the fraction of the CFL quark matter increase, simultaneously, the fraction of neutrino in protoneutron star matter increases, too. The maximum masses and the corresponding radii of (proto)neutron stars are not sensitive to the QCD correction parameter alpha(s).
Resumo:
QCD求和规则是强子物理中的一种非常有效的非微扰方法,它从流的算符乘积展开开始,引入算符乘积展开式的真空期望值,把微扰和非微扰效应分开处理:微扰效应包含在展开系数中,非微扰效应则由算符的真空凝聚值表示。然后利用色散关系,把算符乘积展开式的真空期望值与一个含有强子物理参数的色散积分联系起来,这样就能够计算有关强子的物理量。 本文首先系统介绍了QCD求和规则的基本原理、基本方法,然后结合Dominguez,Gend和Paver的工作[14],展开式保留了的算符d=4凝聚值,采用新的参数化渐近自由阈以下谱函数的方法:即根据文献[25],用实验上了解得比较清楚的两个共振态的贡献来参数化谱函数,计算了s夸克的质量,得到了在动量标度为1Gev时,s夸克的跑动质量为219MeV。在误差范围内,这是一个理论上可以接受的结果,本文计算得到的跑动质量的值能为考察动量转移为1GeV时的质量效应提供参考。 关键词:QCD求和规则 算符乘积展开 色散关系 Borel变换 夸克质
Resumo:
We present the complete next-to-leading order QCD corrections to the polarized hadroproduction of heavy flavors which soon will be studied experimentally in polarized pp collisions at the BNL Relativistic Heavy Ion Collider (RHIC) in order to constrain the polarized gluon density Δg. It is demonstrated that the dependence on unphysical renormalization and factorization scales is strongly reduced beyond the leading order. The sensitivity of the charm quark spin asymmetry to Δg is analyzed in some detail, including the limited detector acceptance for leptons from charm quark decays at the BNL RHIC.
Resumo:
We present the first calculation of the complete NLO QCD corrections to the production of heavy flavors with longitudinally polarized hadrons. This reaction can be used at RHIC to extract the gluon helicity density and may shed light on the "heavy quark enigma". The theoretical uncertainties are briefly discussed.