900 resultados para Pyrolytic and oxidative thermal degradation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resumen del póster presentado en Symposium on Renewable Energy and Products from Biomass and Waste, CIUDEN (Cubillos de Sil, León, Spain), 12-13 May 2015

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation of 2,6,2',6'-tetrabromo-4,4-pm-isoproylidene-di phenol (tetrabromobisphenol A) (TBBPA) has been investigated and a mechanism for its thermal degradation is suggested. TBBPA is a comonomer widely used in epoxy and in unsaturated polyester resins to impart fire retardance. These resins find a common use in electric and electronic equipment. The presence of bromine atoms is the key factor in fire retardant activity, while on the other hand it represents an ecological problem when pyrolytic recycling is programmed at the end of the useful life of such items. However, pyrolysis is the more advantageous recycling system for thermosetting resins and thus efforts should be made to control the pyrolysis in order to avoid or minimize the development of toxics. Homolytic scission of the aromatic bromine and condensation of aromatic bromine with phenolic hydroxyl are the main processes occuring in the range 270-340°C. A large amount of charred residue is left as a consequence of condensation reactions. HBr and brominated phenols and bisphenols are the main volatile products formed. Brominated dibenzodioxins structures are included in the charred residue and not evolved in the volatile phases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive oxygen species oxidize proteins and modulate the proteasomal system in muscle-wasting cancer cachexia. On day 5 (D5), day 10 (D10), and day 14 (D14) after tumor implantation, skeletal muscle was evaluated. Carbonylated proteins and thiobarbituric acid reactive substances were measured. Chemiluminescence was employed for lipid hydroperoxide estimation. Glutathione, superoxide dismutase, and total radical antioxidant capacity were evaluated. The proteasomal system was assessed by mRNA atrogin-1 expression. Increased muscle wasting, lipid hydroperoxide, and superoxide dismutase, and decreased glutathione levels and total radical antioxidant capacity, were found on D5 in accordance with increased mRNA atrogin-1 expression. All parameters were significantly modified in animals treated with alpha-tocopherol. The elevation in aldehylde levels and carbonylated proteins observed on D10 were reversed by cc-tocopherol treatment. Oxidative stress may trigger signal transduction of the proteasomal system and cause protein oxidation. These pathways may be associated with the mechanism of muscle wasting that occurs in cancer cachexia. Muscle Nerve 42: 950-958, 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online ( xcmsonline.scripps.edu ). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo significant time-sensitive alterations when exposed to elevated temperatures, especially those conditions that mimic sample preparation and analysis in GC/MS experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition behavior of the Fe(II), Co(II), Ni(II) and Zn(II) complexes of polydithiooxamide has been investigated by thermogravimetric analysis (TGA) at a heating rate of 20°C min-1 under nitrogen. The Coats-Redfern integral method is used to evaluate the kinetic parameters for the successive steps in the decomposition sequence observed in the TGA curves. The processes of thermal decomposition taking place in the four complexes are studied comparatively as the TGA curves indicate the difference in the thermal decomposition behavior of these complexes. The thermal stabilities of these complexes are discussed in terms of repulsion among electron pairs in the valence shell of the central ion and electronegativity effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal properties of short Nylon-6 fiber-reinforced Styrene butadiene rubber (SBR) composites were studied by Thermogravimetric Analysis (TGA). The effect of epoxy-based bonding agent on thermal degradation of the gum and the composites was also studied. The thermal stability of the SBR was enhanced in the presence of Nylon-6 fibers and the stability of the composites increased in the presence of bonding agent. The epoxy resin did not significantly change the thermal stability of SBR gum vulcanizate. Results of kinetic studies showed that the degradation of SBR and the short nylon fiber-reinforced composites with and without bonding agents followed first-order kinetics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation of short polyester fiber reinforced polyurethane composites with and without different bonding agents has been studied by thermogravimetric analysis . It was found that degradation of the polyurethane takes place in two steps and that of the composites takes place in three steps. With the incorporation of 30 phr of fiber in the matrix , the onset of degradation was shifted from 230 to 238 ° C. The presence of bonding agents in the virgin elastomer and the composite gave an improved thermal stability . Results of kinetic studies showed that the degradation of polyurethane and the reinforced composites with and without bonding agents follows first -order reaction kinetics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal degradation of short kevlar fibre-thermoplastic polyurethane (TPU) composites has been studied by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). TGA showed that the thermal degradation of TPU takes place in two steps with peak maxima (T1max and T2ma,) at 383°C and 448°C, respectively. In the presence of 10-40 phr of short kevlar fibres, T1_ and T2max were shifted to lower temperatures. The temperature of onset of degradation was increased from 245 to 255°C at 40 parts per hundred rubber (phr) fibre loading. Kinetic studies showed that the degradation of TPU and kevlar-TPU composite follows first-order reaction kinetics. The DSC study showed that there is an improvement in thermal stability of TPU in the presence of 20 phr of short kevlar fibres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examined whether sucrose-rich diet (SRD)-induced hyperglycaemia, dyslipidemia and oxidative stress may be inhibited by N-acetylcysteine (C5H9-NO3S), an organosulfur from Allium plants. Male Wistar 40 rats were divided into four groups (n = 10): (C) given standard chow and water; (N) receiving standard chow and 2 mg/l N-acetylcysteine in its drinking water; (SRD) given standard chow and 30% sucrose in its drinking water; and (SRD-N) receiving standard chow, 30% sucrose and N-acetylcysteine in its drinking water. After 30 days of treatment, SRD rats had obesity with increased abdominal circumference, hyperglycaemia, by dyslipidemia and hepatic triacylglycerol accumulation. These adverse effects were associated with oxidative stress and depressed lipid degradation in hepatic tissue. The SRD adverse effects were not observed in SDR-N rats. N-Acetylcysteine reduced the oxidative stress, enhancing glutathione-peroxidase activity, and normalizing lipid hydroperoxyde, reduced glutathione and superoxide dismutase in hepatic tissue of SRD-N rats. The beta-hydroxyacyl coenzyme-A dehydrogenase and citrate-synthase activities were increased in SRD-N rats, indicating enhanced lipid degradation in hepatic tissue as compared to SRD. SRD-N rats had reduced serum oxidative stress and diminished glucose, triacylglycerol, very-low-density lipoprotein (VLDL), oxidized low-density lipoprotein (alpha-LDL) and cholesterol/highdensity lipoprotein (HDL) ratio in relation to SRD. In conclusion, NAC offers promising therapeutic values in prevention of dyslipidemic profile and alleviation of hyperglycaemia in high-sucrose intake condition by improving antioxidant defences. N-Acetylcysteine had also effects preventing metabolic shifting in hepatic tissue, thus enhancing fat degradation and reducing body weight gain in conditions of excess sucrose intake. The application of this agent in food system via exogenous addition may be feasible and beneficial for antioxidant protection. (c) 2006 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The non-isothermal data given by TG curves for poly(3-hydroxybutyrate) (PHB) were studied in order to obtain a consistent kinetic model that better represents the PHB thermal decomposition. Thus, data obtained from the dynamic TG curves were suitably managed in order to obtain the Arrhenius kinetic parameter E according to the isoconversional F-W-O method. Once the E parameters is found, a suitable logA and kinetic model (f(alpha)) could be calculated. Hence, the kinetic triplet (E +/- SD, logA +/- SD and f(alpha)) obtained for the thermal decomposition of PHB under non-isothermal conditions was E=152 +/- 4 kJ mol(-1), logA=14.1 +/- 0.2 s(-1) for the kinetic model, and the autocatalytic model function was: f(alpha)=alpha(m)(1-alpha)(n)=alpha(0.42)(1-alpha)(0.56).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition of ammonium perchlorate (AP)/hydroxyl-terminated-polybutadiene (HTPB), the AP/HTPB solid propellant, was studied at different heating rates in dynamic nitrogen atmosphere. The exothermic reaction kinetics was studied by differential scanning calorimetry (DSC) in non-isothermal conditions. The Arrhenius Parameters were estimated according to the Ozawa method. The calculated activation energy was 134.5 W mol(-1), the pre-exponential factor, A, was 2.04.10(10) min(-1) and the reaction order for the global composite decomposition was estimated in 0.7 by the kinetic Shimadzu software based on the Ozawa method. The Kissinger method for obtaining the activation energy value was also used for comparison. These results are discussed here.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HDPE and PVC geomembranes are sensitive to changes in their properties when in contact with high temperatures. The effects of hot temperature on polymeric geomembranes are assessed by the ASTM D794 and ASTM D5721.This paper brings an analysis of degradation of the Poly Vinyl Chloride (PVC) and High Density Poly Ethylene (HDPE) geomembranes when exposed to conventional and air oven after specific periods.. Mechanical and physical properties were evaluated. OIT tests were also performanced to evaluate the level of oxidation degradation occurred on the HDPE geomembranes. Geomembranes of two thicknesses were tested: 1.0, 2.0 nun (PVC) and 0.8, 2.5 mm, (HDPE). The results obtained show, for example, that after the last period of exposure, the PVC geomembranes (1.0, 2.0 mm) were more rigid and stiffer than fresh samples. The HDPE geomembranes, on the other hand, when exposed to heat presented increases in deformation. OIT tests showed efficient to detect some level of degradation on the HDPE geomembranes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus---host interactions in mixed infections. Compared with single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves and death of the plant. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection and correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly infected leaves were compared with those from singly infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (downregulated), protein synthesis and degradation (upregulated), carbohydrate metabolism (upregulated), and response to biotic stimulus and stress (upregulated). The expressions of reactive oxygen species?generating enzymes as well as several mitogen-activated protein kinases were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely upregulated by the synergistic infection. Virus-induced gene silencing of ?-dioxygenase1 delayed cell death during PVX?PVY infection.