969 resultados para Pulmonary alveolar microlithiasis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACD/MPV) is a rare and lethal developmental disorder of the lung defined by a constellation of characteristic histopathological features. Nonpulmonary anomalies involving organs of gastrointestinal, cardiovascular, and genitourinary systems have been identified in approximately 80% of patients with ACD/MPV. We have collected DNA and pathological samples from more than 90 infants with ACD/MPV and their family members. Since the publication of our initial report of four point mutations and 10 deletions, we have identified an additional 38 novel nonsynonymous mutations of FOXF1 (nine nonsense, seven frameshift, one inframe deletion, 20 missense, and one no stop). This report represents an up to date list of all known FOXF1 mutations to the best of our knowledge. Majority of the cases are sporadic. We report four familial cases of which three show maternal inheritance, consistent with paternal imprinting of the gene. Twenty five mutations (60%) are located within the putative DNA-binding domain, indicating its plausible role in FOXF1 function. Five mutations map to the second exon. We identified two additional genic and eight genomic deletions upstream to FOXF1. These results corroborate and extend our previous observations and further establish involvement of FOXF1 in ACD/MPV and lung organogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Investigation of standard intensities of physical exercise is important to better comprehend and develop rehabilitation programs for emphysema. We aimed to evaluate the effects of different intensities (moderate and high-intensity) of physical exercise on the development of a protease-induced (papain intratracheal instillation) emphysema in rats. METHODS: Male Wistar rats were randomly separated into five groups that received intratracheal instillation of papain solution or vehicle: (i) papain high intensity exercise, (ii) papain moderate exercise, (iii) saline high intensity exercise, (iv) saline sedentary and (v) papain sedentary. Forty days after intratracheal instillation, the exercise groups were submitted to an exercise-training protocol on a treadmill during 10 weeks, 5 days/week, at 0.9 km/h (Papain and saline high exercise), or at 0.6 km/h (papain moderate exercise).We measured respiratory system elastance and resistance, the collagen fiber lung parenchyma, and the pulmonary mean linear intercept. RESULTS: All animal groups that received papain instillation presented higher alveolar wall destruction compared to animals that received only saline solution. The papain high intensity exercise group presented higher values of mean linear intercept compared to emphysema groups that were trained at a moderate intensity or not submitted to exercise. CONCLUSION: High intensity exercise training worsened alveolar destruction in an experimental model of emphysema in rats when compared to moderate intensity exercise, or to no exercise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Sarcoidosis is a multisystem granulomatous disease of unknown aetiology. Proteins present within the alveolar space early in sarcoidosis disease may provide an insight into novel mechanisms for the development of fibrotic disease and in particular pulmonary fibrosis.

METHODS: A modified two-dimensional difference gel electrophoresis protocol was applied to the human bronchoalveolar lavage fluid (hBALF) of four patients with non-persistent pulmonary interstitial disease at 4-year follow-up (defined as mild disease) and four patients who developed pulmonary interstitial disease at 4-year follow-up (defined as severe disease). The protein β-actin was identified by LC-MS/MS from a preparative gel and found to be significantly elevated in early lavages from the severe disease group. To look at the potential pro-fibrotic effects of this protein, primary human pulmonary fibroblasts (CCD-19Lu) were treated with recombinant β-actin following which qPCR and ELISA assays were used to measure any effects.

RESULTS: We found that β-actin levels were significantly elevated in early hBALF samples in patients who subsequently developed severe disease when compared to the mild group. Treating primary human pulmonary fibroblasts with recombinant β-actin led to enhanced gene expression of the pro-fibrotic markers alpha smooth muscle actin and collagen 1 as well as the increased secretion of interleukin-13 and metalloproteinases 3 and 9.

CONCLUSION: Free β-actin within the lungs of sarcoidosis patients potentially may contribute to disease pathogenesis particularly in the context of abnormal remodelling and the development of pulmonary fibrosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Original sevoflurane (Sevo A) is made with water, while a generic sevoflurane (Sevocris) is produced with propylene glycol as a stabilizing additive. We investigated whether the original and generic sevoflurane preparations differed in terms of their minimum alveolar concentration (MAC) values and hemodynamic effects. METHODS: Sixteen pigs weighing 31.6±1.8 kg were randomly assigned to the Sevo A or Sevocris groups. After anesthesia induction via mask with the appropriate sevoflurane preparation (6% in 100% oxygen), the MAC was determined for each animal. Hemodynamic and oxygenation parameters were measured at 0.5 MAC, 1 MAC and 1.5 MAC. Histopathological analyses of lung parenchyma were performed. RESULTS: The MAC in the Sevo A group was 4.4±0.5%, and the MAC in the Sevocris group was 4.1±0.7%. Hemodynamic and metabolic parameters presented significant differences in a dose-dependent pattern as expected, but they did not differ between groups. Cardiac indices and arterial pressures decreased in both groups when the sevoflurane concentration increased from 0.5 to 1 and 1.5 MAC. The oxygen delivery index (DO2I) decreased significantly at 1.5 MAC. CONCLUSION: Propylene glycol as an additive for sevoflurane seems to be as safe as a water additive, at least in terms of hemodynamic and pulmonary effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to investigate the interference of a daily treatment of dexamethasone in the pulmonary cycle of Strongyloides venezuelensis infection in rats. Three principal effects were found: 1) increased alveolar hemorrhagic inflammation provoked by the passage of larvae into alveolar spaces; 2) significant decrease of eosinophil and mast cell migration to the axial septum of the lungs; and 3) impaired formation of the reticular fiber network, interfering with granuloma organization. This study showed that the use of drugs with immunomodulatory actions, such as dexamethasone, in addition to interfering with the morbidity from the pulmonary cycle of S. venezuelensis infection, may contribute to showing the mechanisms involved in its pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prostaglandins (PGs) and leukotrienes (LTs) are produced in Mycobacterium tuberculosis (Mtb)-infected lungs and have immune suppressive and protective effects, respectively. Considering that both of these mediators are produced during mycobacterial infection, we investigated the specific and relative biological importance of each in regulating host response in experimental tuberculosis. Administration of celecoxib, which was found to reduce lung levels of PGE(2) and increase LTB(4), enhanced the 60-day survival of Mtb-infected mice in 14%. However administration of MK-886, which reduced levels of LTB(4) but did not enhance PGE(2), reduced 60-day survival from 86% to 43% in Mtb-infected mice, and increased lung bacterial burden. MK-886 plus celecoxib reduced survival to a lesser extent than MK-886 alone. MK-886- and MK-886 plus celecoxib-treated animals exhibited reduced levels of the protective interleukin-12 and gamma-interferon. Our findings indicate that in this model, the protective effect of LTs dominates over the suppressive effect of PGs. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The importance of lung tissue in asthma pathophysiology has been recently recognized. Although nitric oxide mediates smooth muscle tonus control in airways, its effects on lung tissue responsiveness have not been investigated previously. We hypothesized that chronic nitric oxide synthase (NOS) inhibition by N-omega-nitro-L-arginine methyl ester (L-NAME) may modulate lung tissue mechanics and eosinophil and extracellular matrix remodeling in guinea pigs with chronic pulmonary inflammation. Animals were submitted to seven saline or ovalbumin exposures with increasing doses (1 similar to 5 mg/ml for 4 wk) and treated or not with L-NAME in drinking water. After the seventh inhalation (72 h), animals were anesthetized and exsanguinated, and oscillatory mechanics of lung tissue strips were performed in baseline condition and after ovalbumin challenge (0.1%). Using morphometry, we assessed the density of eosinophils, neuronal NOS (nNOS)- and inducible NOS (iNOS)-positive distal lung cells, smooth muscle cells, as well as collagen and elastic fibers in lung tissue. Ovalbumin-exposed animals had an increase in baseline and maximal tissue resistance and elastance, eosinophil density, nNOS- and iNOS-positive cells, the amount of collagen and elastic fibers, and isoprostane-8-PGF(2 alpha) expression in the alveolar septa compared with controls (P < 0.05). L-NAME treatment in ovalbumin-exposed animals attenuated lung tissue mechanical responses (P < 0.01), nNOS- and iNOS-positive cells, elastic fiber content (P < 0.001), and isoprostane-8-PGF(2 alpha) in the alveolar septa (P < 0.001). However, this treatment did not affect the total number of eosinophils and collagen deposition. These data suggest that NO contributes to distal lung parenchyma constriction and to elastic fiber deposition in this model. One possibility may be related to the effects of NO activating the oxidative stress pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prone position may delay the development of ventilator-induced lung injury (VILI), but the mechanisms require better elucidation. In experimental mild acute lung injury (ALI), arterial oxygen partial pressure (Pa(O2)), lung mechanics and histology, inflammatory markers [interleukin (IL)-6 and IL-1 beta], and type III procollagen (PCIII) mRNA expressions were analysed in supine and prone position. Wistar rats were randomly divided into two groups. In controls, saline was intraperitoneally injected while ALI was induced by paraquat. After 24-h, the animals were mechanically ventilated for 1-h in supine or prone positions. In ALI, prone position led to a better blood flow/tissue ratio both in ventral and dorsal regions and was associated with a more homogeneous distribution of alveolar aeration/tissue ratio reducing lung static elastance and viscoelastic pressure, and increasing end-expiratory lung volume and Pa(O2). PCIII expression was higher in the ventral than dorsal region in supine position, with no regional changes in inflammatory markers. In conclusion, prone position may protect the lungs against VILI, thus reducing pulmonary stress and strain. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate the effects of low and high levels of positive end-expiratory pressure (PEEP), without recruitment maneuvers, during lung protective ventilation in an experimental model of acute lung injury (ALI). Design: Prospective, randomized, and controlled experimental study. Setting: University research laboratory. Subjects: Wistar rats were randomly assigned to control (C) [saline (0.1 ml), intraperitoneally] and ALI [paraquat (15 mg/kg), intra peritoneally] groups. Measurements and Main Results: After 24 hours, each group was further randomized into four groups (six rats each) at different PEEP levels = 1.5, 3, 4.5, or 6 cm H(2)O and ventilated with a constant tidal volume (6 mL/kg) and open thorax. Lung mechanics [static elastance (Est, L) and viscoelastic pressure (Delta P2, L)] and arterial blood gases were measured before (Pre) and at the end of 1-hour mechanical ventilation (Post). Pulmonary histology (light and electron microscopy) and type III procollagen (PCIII) messenger RNA (mRNA) expression were measured after 1 hour of mechanical ventilation. In ALI group, low and high PEEP levels induced a greater percentage of increase in Est, L (44% and 50%) and Delta P2, L (56% and 36%) in Post values related to Pre. Low PEEP yielded alveolar collapse whereas high PEEP caused overdistension and atelectasis, with both levels worsening oxygenation and increasing PCIII mRNA expression. Conclusions: In the present nonrecruited ALI model, protective mechanical ventilation with lower and higher PEEP levels than required for better oxygenation increased Est, L and Delta P2, L, the amount of atelectasis, and PCIII mRNA expression. PEEP selection titrated for a minimum elastance and maximum oxygenation may prevent lung injury while deviation from these settings may be harmful. (Crit Care Med 2009; 37:1011-1017)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the influence of iNOS-derived NO on the mechanics, inflammatory, and remodeling process in peripheral lung parenchyma of guinea pigs with chronic pulmonary allergic inflammation. Animals treated or not with 1400W were submitted to seven exposures of ovalbumin in increasing doses. Seventy-two hours after the 7th inhalation, lung strips were suspended in a Krebs organ bath, and tissue resistance and elastance measured at baseline and after ovalbumin challenge. The strips were submitted to histopathological measurements. The ovalbumin-exposed animals showed increased maximal responses of resistance and elastance (p < 0.05), eosinophils counting (p < 0.001), iNOS-positive cells (p < 0.001), collagen and elastic fiber deposition (p < 0.05), actin density (p < 0.05) and 8-iso-PGF2 alpha expression (p < 0.001) in alveolar septa compared to saline-exposed ones. Ovalbumin-exposed animals treated with 1400 W had a significant reduction in lung functional and histopathological findings (p < 0.05). We showed that iNOS-specific inhibition attenuates lung parenchyma constriction, inflammation, and remodeling, suggesting NO-participation in the modulation of the oxidative stress pathway. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present work we investigated the effects of Crotalus durissus terrificus venom (CdtV) on the pulmonary mechanic events [static and dynamic elastance, resistive (Delta P1) and viscoelastic pressures (Delta P2)] and histology after intramuscular injection of saline solution (control) or venom (0.6 mu g/g). The static and dynamic elastance values were increased significantly after 3 It of venom inoculation, but were reduced at control values in the other periods studied. The Delta P1 values that correspond to the resistive properties of lung tissue presented a significant increase after 6 h of CdtV injection, reducing to basal levels 12 h after the venom injection. In Delta P2 analysis, correspondent to viscoelastic components, an increase occurred 12 h after the venom injection, returning to control values at 24 h. CdtV also caused an increase of leukocytes recruitment (3-24 h) to the airways wall as well as to the lung parenchyma. In conclusion, C. durissus terrificus rattlesnake venom leads to lung injury which is reverted, after 24 h of inoculation. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective. The aim of this study is to test the hypothesis that recruitment maneuvers (RMs) might act differently in models of pulmonary (p) and extrapulmonary (exp) acute lung injury (ALI) with similar transpulmonary pressure changes. Design: Prospective, randomized, controlled experimental study. Setting. University research laboratory. Subjects: Wistar rats were randomly divided into four groups. In control groups, sterile saline solution was intratracheally (0.1 mL, Cp) or intraperitoneally (1 mL, Cexp) injected, whereas ALI animals received Escherichia coli lipopolysaccharide intratracheally (100 jig, ALIp) or intraperitoneally (1 mg, ALIexp). After 24 hrs, animals were mechanically ventilated (tidal volume, 6 mL/kg; positive end-expiratory pressure, 5 cm H2O) and three RMs (pressure inflations to 40 cm H2O for 40 secs, 1 min apart) applied. Measurements and Main Results. Pao(2), lung resistive and viscoelastic pressures, static elastance, lung histology (light and electron microscopy), and type III procollagen messenger RNA expression in pulmonary tissue were measured before RMs and at the end of 1 hr of mechanical ventilation. Mechanical variables, gas exchange, and the fraction of area of alveolar collapse were similar in both ALI groups. After RMs, lung resistive and viscoelastic pressures and static elastance decreased more in ALIexp (255%,180%, and 118%, respectively) than in ALIp (103%, 59%, and 89%, respectively). The amount of atelectasis decreased more in ALIexp than in ALIp (from 58% to 19% and from 59% to 33%, respectively). RMs augmented type III procollagen messenger RNA expression only in the ALIp group (19%), associated with worsening in alveolar epithelium injury but no capillary endothelium lesion, whereas the ALIexp group showed a minor detachment of the alveolar capillary membrane. Conclusions. Given the same transpulmonary pressures, RMs are more effective at opening collapsed alveoli in ALIexp than in ALIp, thus improving lung mechanics and oxygenation with limited damage to alveolar epithelium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Uncertainties about the numerous degrees of freedom in ventilator settings leave many unanswered questions about the biophysical determinants of lung injury. We investigated whether mechanical ventilation with high air flow could yield lung mechanical stress even in normal animals. Design. Prospective, randomized, controlled experimental study. Setting: University research laboratory. Subjects. Thirty normal male Wistar rats (180-230 g). Interventions: Rats were ventilated for 2 hrs with tidal volume of 10 mL/kg and either with normal inspiratory air flow (V`) of 10 mL/s (F10) or high V` of 30 mL/s (F30). In the control group, animals did not undergo mechanical ventilation. Because high flow led to elevated respiratory rate (200 breaths/min) and airway peak inspiratory pressure (PIP,aw = 17 cm H2O), two additional groups were established to rule out the potential contribution of these variables: a) normal respiratory rate = 100 breaths/min and V` = 30 mL/sec; and b) PIP,aw = 17 cm H2O and V` 10 mL/sec. Measurements and Main Results: Lung mechanics and histology (light and electron microscopy), arterial blood gas analysis, and type III procollagen messenger RNA expression in lung tissue were analyzed. Ultrastructural microscopy was similar in control and F10 groups. High air flow led to increased lung plateau and peak pressures, hypoxemia, alveolar hyperinflation and collapse, pulmonary neutrophilic infiltration, and augmented type III procollagen messenger RNA expression compared with control rats. The reduction of respiratory rate did not modify the morphofunctional behavior observed in the presence of increased air flow. Even though the increase in peak pressure yielded mechanical and histologic changes, type III procollagen messenger RNA expression remained unaltered. Conclusions: Ventilation with high inspiratory air flow may lead to high tensile and shear stresses resulting in lung functional and morphologic compromise and elevation of type III procollagen messenger RNA expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Air pollution is associated with morbidity and mortality induced by respiratory diseases. However, the mechanisms therein involved are not yet fully clarified. Thus, we tested the hypothesis that a single acute exposure to low doses of fine particulate matter (PM2.5) may induce functional and histological lung changes and unchain inflammatory and oxidative stress processes. PM2.5 was collected from the urban area of Sao Paulo city during 24 h and underwent analysis for elements and polycyclic aromatic hydrocarbon contents. Forty-six male BALB/c mice received intranasal instillation of 30 mu L of saline (CTRL) or PM2.5 at 5 or 15 mu g in 30 mu L of saline (P5 and P15, respectively). Twenty-four hours later, lung mechanics were determined. Lungs were then prepared for histological and biochemical analysis. P15 group showed significantly increased lung impedance and alveolar collapse, as well as lung tissue inflammation, oxidative stress and damage. P5 presented values between CTRL and P15: higher mechanical impedance and inflammation than CTRL, but lower inflammation and oxidative stress than P15. In conclusion, acute exposure to low doses of fine PM induced lung inflammation, oxidative stress and worsened lung impedance and histology in a dose-dependent pattern in mice.