504 resultados para Prosimian Primate
Resumo:
Analysis of TRIM5α and APOBEC3G genes suggests that these two restriction factors underwent strong positive selection throughout primate evolution. This pressure was possibly imposed by ancient exogenous retroviruses, of which endogenous retroviruses are remnants. Our study aims to assess in vitro the activity of these factors against ancient retroviruses by reconstructing their ancestral gag sequences, as well as the ancestral TRIM5α and APOBEC3G for primates. Based on evolutionary genomics approach, we reconstructed ancestors of the two largest families of human endogenous retroviruses (HERV), namely HERV-K and HERV-H, as well as primate ancestral TRIM5α and APOBEC3G variants. The oldest TRIM5α sequence was the catarhinne TRIM5α, common ancestor of Old World monkeys and hominoids, dated from 25 million years ago (mya). From the oldest, to the youngest, ancestral TRIM5α variants showed less restriction of HIV-1 in vitro [1]. Likewise three ancestral APOBEC3Gs sequences common to hominoids (18 mya), Old World monkeys, and catarhinnes (25 mya) were reconstructed. All ancestral APOBEC3G variants inhibited efficiently HIV-1Δvif in vitro, compared to modern APOBEC3Gs. The ability of Vif proteins (HIV-1, HIV-2, SIVmac and SIVagm) to counteract their activity tallied with the residue 128 on ancestral APOBEC3Gs. Moreover we are attempting to reconstruct older ancestral sequences of both restriction factors by using prosimian orthologue sequences. An infectious onemillion- years-old HERV-KCON previously reconstituted was shown to be resistant to modern TRIM5α and APOBEC3G [2]. Our ancestral TRIM5α and APOBEC3G variants were inactive against HERV-KCON. Besides we reconstructed chimeric HERV-K bearing ancestral capsids (up to 7 mya) that resulted in infectious viruses resistant to modern and ancestral TRIM5α. Likewise HERV-K viruses bearing ancestral nucleocapsids will be tested for ancestral and modern APOBEC3G restriction. In silico reconstruction and structural modeling of ancestral HERV-H capsids resulted in structures homologous to that of the gammaretrovirus MLV. Thus we are attempting to construct chimeric MLV virus bearing HERV-H ancestral capsids. These chimeric ancestral HERVs will be tested for infectivity and restriction by ancestral TRIM5α. Similarly chimeric MLV viruses bearing ancestral HERV-H nucleocapsids will be reconstructed and tested for APOBEC3G restriction.
Resumo:
Leishmaniasis causes significant morbidity and mortality, constituting an important global health problem for which there are few effective drugs. Given the urgent need to identify a safe and effective Leishmania vaccine to help prevent the two million new cases of human leishmaniasis worldwide each year, all reasonable efforts to achieve this goal should be made. This includes the use of animal models that are as close to leishmanial infection in humans as is practical and feasible. Old world monkey species (macaques, baboons, mandrills etc.) have the closest evolutionary relatedness to humans among the approachable animal models. The Asian rhesus macaques (Macaca mulatta) are quite susceptible to leishmanial infection, develop a human-like disease, exhibit antibodies to Leishmania and parasite-specific T-cell mediated immune responses both in vivo and in vitro, and can be protected effectively by vaccination. Results from macaque vaccine studies could also prove useful in guiding the design of human vaccine trials. This review summarizes our current knowledge on this topic and proposes potential approaches that may result in the more effective use of the macaque model to maximize its potential to help the development of an effective vaccine for human leishmaniasis.
Resumo:
The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.
Resumo:
We have demonstrated that cortical cell autografts might be a useful therapy in two monkey models of neurological disease: motor cortex lesion and Parkinson's disease. However, the origin of the useful transplanted cells obtained from cortical biopsies is not clear. In this report we describe the expression of doublecortin (DCX) in these cells based on reverse-transcription polymerase chain reaction (RT-PCR) and immunodetection in the adult primate cortex and cell cultures. The results showed that DCX-positive cells were present in the whole primate cerebral cortex and also expressed glial and/or neuronal markers such as glial fibrillary protein (GFAP) or neuronal nuclei (NeuN). We also demonstrated that only DCX/GFAP positive cells were able to proliferate and originate progenitor cells in vitro. We hypothesize that these DCX-positive cells in vivo have a role in cortical plasticity and brain reaction to injury. Moreover, in vitro these DCX-positive cells have the potential to reacquire progenitor characteristics that confirm their potential for brain repair.
Resumo:
Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.
Resumo:
The potential for "replacement cells" to restore function in Parkinson's disease has been widely reported over the past 3 decades, rejuvenating the central nervous system rather than just relieving symptoms. Most such experiments have used fetal or embryonic sources that may induce immunological rejection and generate ethical concerns. Autologous sources, in which the cells to be implanted are derived from recipients' own cells after reprogramming to stem cells, direct genetic modifications, or epigenetic modifications in culture, could eliminate many of these problems. In a previous study on autologous brain cell transplantation, we demonstrated that adult monkey brain cells, obtained from cortical biopsies and kept in culture for 7 weeks, exhibited potential as a method of brain repair after low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused dopaminergic cell death. The present study exposed monkeys to higher MPTP doses to produce significant parkinsonism and behavioral impairments. Cerebral cortical cells were biopsied from the animals, held in culture for 7 weeks to create an autologous neural cell "ecosystem" and reimplanted bilaterally into the striatum of the same six donor monkeys. These cells expressed neuroectodermal and progenitor markers such as nestin, doublecortin, GFAP, neurofilament, and vimentin. Five to six months after reimplantation, histological analysis with the dye PKH67 and unbiased stereology showed that reimplanted cells survived, migrated bilaterally throughout the striatum, and seemed to exert a neurorestorative effect. More tyrosine hydroxylase-immunoreactive neurons and significant behavioral improvement followed reimplantation of cultured autologous neural cells as a result of unknown trophic factors released by the grafts. J. Comp. Neurol. 522:2729-2740, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
We summarize the progress in whole-genome sequencing and analyses of primate genomes. These emerging genome datasets have broadened our understanding of primate genome evolution revealing unexpected and complex patterns of evolutionary change. This includes the characterization of genome structural variation, episodic changes in the repeat landscape, differences in gene expression, new models regarding speciation, and the ephemeral nature of the recombination landscape. The functional characterization of genomic differences important in primate speciation and adaptation remains a significant challenge. Limited access to biological materials, the lack of detailed phenotypic data and the endangered status of many critical primate species have significantly attenuated research into the genetic basis of primate evolution. Next-generation sequencing technologies promise to greatly expand the number of available primate genome sequences; however, such draft genome sequences will likely miss critical genetic differences within complex genomic regions unless dedicated efforts are put forward to understand the full spectrum of genetic variation.
Resumo:
Autologous brain cell transplantation might be useful for repairing lesions and restoring function of the central nervous system. We have demonstrated that adult monkey brain cells, obtained from cortical biopsy and kept in culture for a few weeks, exhibit neural progenitor characteristics that make them useful for brain repair. Following MPTP treatment, primates were dopamine depleted but asymptomatic. Autologous cultured cells were reimplanted into the right caudate nucleus of the donor monkey. Four months after reimplantation, histological analysis by stereology and TH immunolabeling showed that the reimplanted cells successfully survived, bilaterally migrated in the whole striatum, and seemed to have a neuroprotection effect over time. These results may add a new strategy to the field of brain neuroprotection or regeneration and could possibly lead to future clinical applications.
Resumo:
Rapport de synthèse : La présence de trois canaux d'eau, appelés aquaporines AQP1, AQP4 et AQP9, a été observée dans le cerveau sain ainsi que dans plusieurs modèles des pathologies cérébrales des rongeurs. Peu est connu sur la distribution des AQP dans le cerveau des primates. Cette connaissance sera utile pour des futurs essaies médicamenteux qui visent à prévenir la formation des oedèmes cérébraux. Nous avons étudié l'expression et la distribution cellulaire des AQP1, 4 et 9 dans le cerveau primate non-humain. La distribution des AQP4 dans le cerveau primate non-humain a été observée dans des astrocytes périvasculaires, comparable à l'observation faite dans le cerveau du rongeur. Contrairement à ce qui a été décrit chez le rongeur, l'AQPI chez le primate est exprimée dans les processus et dans les prolongations périvasculaires d'un sous-type d'astrocytes, qui est avant tout localisé dans la matière blanche et dans la glia limitans et qui est peut-être impliqué dans l'homéostasie de l'eau. L'AQPI a aussi été observée dans les neurones qui innervent des vaisseaux sanguins de la pie-mère, suggérant un rôle possible dans la régularisation de la vascularisation cérébrale. Comme décrit chez le rongeur, le mRNA et les protéines de l'AQP9 ont été détectés dans des astrocytes et dans des neurones catécholaminergiques. Chez le primate, des localisations supplémentaires ont été observées dans des populations de neurones placées dans certaines zones corticales. Cet article décrit une étude détaillée sur la distribution des AQP1, 4 et 9 dans le cerveau primate non-humain. Les observations faites s'additionnent aux data déjà publié sur le cerveau du rongeur. Ces importantes différences entre les espèces doivent être considérées dans l'évaluation des médicaments qui agiront potentiellement sur des AQP des primates non-humains avant d'entrer dans la phase des essais cliniques sur des humains.
Resumo:
The current availability of five complete genomes of different primate species allows the analysis of genetic divergence over the last 40 million years of evolution. We hypothesized that the interspecies differences observed in susceptibility to HIV-1 would be influenced by the long-range selective pressures on host genes associated with HIV-1 pathogenesis. We established a list of human genes (n = 140) proposed to be involved in HIV-1 biology and pathogenesis and a control set of 100 random genes. We retrieved the orthologous genes from the genome of humans and of four nonhuman primates (Pan troglodytes, Pongo pygmaeus abeli, Macaca mulatta, and Callithrix jacchus) and analyzed the nucleotide substitution patterns of this data set using codon-based maximum likelihood procedures. In addition, we evaluated whether the candidate genes have been targets of recent positive selection in humans by analyzing HapMap Phase 2 single-nucleotide polymorphisms genotyped in a region centered on each candidate gene. A total of 1,064 sequences were used for the analyses. Similar median K(A)/K(S) values were estimated for the set of genes involved in HIV-1 pathogenesis and for control genes, 0.19 and 0.15, respectively. However, genes of the innate immunity had median values of 0.37 (P value = 0.0001, compared with control genes), and genes of intrinsic cellular defense had K(A)/K(S) values around or greater than 1.0 (P value = 0.0002). Detailed assessment allowed the identification of residues under positive selection in 13 proteins: AKT1, APOBEC3G, APOBEC3H, CD4, DEFB1, GML, IL4, IL8RA, L-SIGN/CLEC4M, PTPRC/CD45, Tetherin/BST2, TLR7, and TRIM5alpha. A number of those residues are relevant for HIV-1 biology. The set of 140 genes involved in HIV-1 pathogenesis did not show a significant enrichment in signals of recent positive selection in humans (intraspecies selection). However, we identified within or near these genes 24 polymorphisms showing strong signatures of recent positive selection. Interestingly, the DEFB1 gene presented signatures of both interspecies positive selection in primates and intraspecies recent positive selection in humans. The systematic assessment of long-acting selective pressures on primate genomes is a useful tool to extend our understanding of genetic variation influencing contemporary susceptibility to HIV-1.
Resumo:
Lentiviruses, the genus of retrovirus that includes HIV-1, rarely endogenize. Some lemurs uniquely possess an endogenous lentivirus called PSIV ("prosimian immunodeficiency virus"). Thus, lemurs provide the opportunity to study the activity of host defense factors, such as TRIM5α, in the setting of germ line invasion. We characterized the activities of TRIM5α proteins from two distant lemurs against exogenous retroviruses and a chimeric PSIV. TRIM5α from gray mouse lemur, which carries PSIV in its genome, exhibited the narrowest restriction activity. One allelic variant of gray mouse lemur TRIM5α restricted only N-tropic murine leukemia virus (N-MLV), while a second variant restricted N-MLV and, uniquely, B-tropic MLV (B-MLV); both variants poorly blocked PSIV. In contrast, TRIM5α from ring-tailed lemur, which does not contain PSIV in its genome, revealed one of the broadest antiviral activities reported to date against lentiviruses, including PSIV. Investigation into the antiviral specificity of ring-tailed lemur TRIM5α demonstrated a major contribution of a 32-amino-acid expansion in variable region 2 (v2) of the B30.2/SPRY domain to the breadth of restriction. Data on lemur TRIM5α and the prediction of ancestral simian sequences hint at an evolutionary scenario where antiretroviral specificity is prominently defined by the lineage-specific expansion of the variable loops of B30.2/SPRY.
Resumo:
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed.
Resumo:
Many models of sex-biased dispersal predict that the direction of sex-bias depends upon a species' mating system. In agreement with this, almost all polygynous mammals show male-biased dispersal whereas largely monogamous birds show female-biased dispersal (FBD). The hamadryas baboon (Papio hamadryas hamadryas) is polygynous and so dispersal is predicted to be male biased, as is found in all other baboon subspecies, but there are conflicting field data showing both female and male dispersal. Using 19 autosomal genetic markers genotyped in baboons from four Saudi Arabian populations, we found strong evidence for FBD in post-dispersal adults but not, as expected, in pre-dispersal infants and young juveniles, when we compared male and female: population structure (F(st)), inbreeding (F(is)), relatedness (r), and the mean assignment index (mAIc). Furthermore, we found evidence for female-biased gene flow as population genetic structure (F(st)), was about four times higher for the paternally inherited Y, than for either autosomal markers or for maternally inherited mtDNA. These results contradict the direction of sex-bias predicted by the mating system and show that FBD has evolved recently from an ancestral state of male-biased dispersal. We suggest that the cost-benefit balance of dispersal to males and females is tightly linked to the unique hierarchical social structure of hamadryas baboons and that dispersal and social organization have coevolved.
Resumo:
Duplicated sequences are substrates for the emergence of new genes and are an important source of genetic instability associated with rare and common diseases. Analyses of primate genomes have shown an increase in the proportion of interspersed segmental duplications (SDs) within the genomes of humans and great apes. This contrasts with other mammalian genomes that seem to have their recently duplicated sequences organized in a tandem configuration. In this review, we focus on the mechanistic origin and impact of this difference with respect to evolution, genetic diversity and primate phenotype. Although many genomes will be sequenced in the future, resolution of this aspect of genomic architecture still requires high quality sequences and detailed analyses.