972 resultados para Progettazione impianti macchine vaschette alimentari food realizzazione telai guide incollatori piani trasporto taglio applicazione


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INDICE INTRODUZIONE 1 1. DESCRIZIONE DEL SISTEMA COSTRUTTIVO 5 1.1 I pannelli modulari 5 1.2 Le pareti tozze in cemento armato gettate in opera realizzate con la tecnologia del pannello di supporto in polistirene 5 1.3 La connessione tra le pareti e la fondazione 6 1.4 Le connessioni tra pareti ortogonali 7 1.5 Le connessioni tra pareti e solai 7 1.6 Il sistema strutturale così ottenuto e le sue caratteristiche salienti 8 2. RICERCA BIBLIOGRAFICA 11 2.1 Pareti tozze e pareti snelle 11 2.2 Il comportamento scatolare 13 2.3 I muri sandwich 14 2.4 Il “ferro-cemento” 15 3. DATI DI PARTENZA 19 3.1 Schema geometrico - architettonico definitivo 19 3.2 Abaco delle sezioni e delle armature 21 3.3 Materiali e resistenze 22 3.4 Valutazione del momento di inerzia delle pareti estese debolmente armate 23 3.4.1 Generalità 23 3.4.2 Caratteristiche degli elementi provati 23 3.4.3 Formulazioni analitiche 23 3.4.4 Considerazioni sulla deformabilità dei pannelli debolmente armati 24 3.4.5 Confronto tra rigidezze sperimentali e rigidezze valutate analiticamente 26 3.4.6 Stima di un modulo elastico equivalente 26 4. ANALISI DEI CARICHI 29 4.1 Stima dei carichi di progetto della struttura 29 4.1.1 Stima dei pesi di piano 30 4.1.2 Tabella riassuntiva dei pesi di piano 31 4.2 Analisi dei carichi da applicare in fase di prova 32 4.2.1 Pesi di piano 34 4.2.2 Tabella riassuntiva dei pesi di piano 35 4.3 Pesi della struttura 36 4.3.1 Ripartizione del carico sulle pareti parallele e ortogonali 36 5. DESCRIZIONE DEL MODELLO AGLI ELEMENTI FINITI 37 5.1 Caratteristiche di modellazione 37 5.2 Caratteristiche geometriche del modello 38 5.3 Analisi dei carichi 41 5.4 Modello con shell costituite da un solo layer 43 5.4.1 Modellazione dei solai 43 5.4.2 Modellazione delle pareti 44 5.4.3 Descrizione delle caratteristiche dei materiali 46 5.4.3.1 Comportamento lineare dei materiali 46 6. ANALISI DEL COMPORTAMENTO STATICO DELLA STRUTTURA 49 6.1 Azioni statiche 49 6.2 Analisi statica 49 7. ANALISI DEL COMPORTAMENTO DINAMICO DELLA STRUTTURA 51 7.1 Determinazione del periodo proprio della struttura con il modello FEM 51 7.1.1 Modi di vibrare corrispondenti al modello con solai e pareti costituiti da elementi shell 51 7.1.1.1 Modi di vibrare con modulo pari a E 51 7.1.1.2 Modi di vibrare con modulo pari a 0,5E 51 7.1.1.3 Modi di vibrare con modulo pari a 0,1E 51 7.1.2 Modi di vibrare corrispondenti al modello con solai infinitamente rigidi e pareti costituite da elementi shell 52 7.1.2.1 Modi di vibrare con modulo pari a E 52 7.1.2.2 Modi di vibrare con modulo pari a 0,5E 52 7.1.2.3 Modi di vibrare con modulo pari a 0,1E: 52 7.1.3 Modi di vibrare corrispondenti al modello con solai irrigiditi con bielle e pareti costituite da elementi shell 53 7.1.3.1 Modi di vibrare con modulo pari a E 53 7.1.3.2 Modi di vibrare con modulo pari a 0,5E 53 7.1.3.3 Modi di vibrare con modulo pari a 0,1E 53 7.2 Calcolo del periodo proprio della struttura assimilandola ad un oscillatore semplice 59 7.2.1 Analisi svolta assumendo l’azione del sisma in ingresso in direzione X-X 59 7.2.1.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 59 7.2.1.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 59 7.2.1.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 61 7.2.1.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 63 7.2.1.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 66 7.2.1.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 69 7.2.1.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 69 7.2.1.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 71 7.2.1.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 73 7.2.1.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 76 7.2.1.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 79 7.2.1.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 79 7.2.1.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 81 7.2.1.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 83 7.2.1.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 86 7.2.2 Analisi svolta assumendo l’azione del sisma in ingresso in direzione Y-Y 89 7.2.2.1 Analisi svolta assumendo il modulo elastico E pari a 300000 Kg/cm2 89 7.2.2.1.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 89 7.2.2.1.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 91 7.2.2.1.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 93 7.2.2.1.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 98 7.2.2.1.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari ad E 103 7.2.2.1.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 105 7.2.2.1.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 107 7.2.2.1.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari ad E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 112 7.2.2.2 Analisi svolta assumendo il modulo elastico E pari a 150000 Kg/cm2 117 7.2.2.2.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5E 117 7.2.2.2.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,5E 119 7.2.2.2.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 121 7.2.2.2.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5 E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 126 7.2.2.2.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,5 E 131 7.2.2.2.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 133 7.2.2.2.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 135 7.2.2.2.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,5E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 140 7.2.2.3 Analisi svolta assumendo il modulo elastico E pari a 30000 Kg/cm2 145 7.2.2.3.1 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1E 145 7.2.2.3.2 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari a 0,1E 147 7.2.2.3.3 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 149 7.2.2.3.4 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 154 7.2.2.3.5 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H e modulo elastico assunto pari a 0,1 E 159 7.2.2.3.6 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H e modulo elastico assunto pari ad E 161 7.2.2.3.7 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 2/3 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 163 7.2.2.3.8 Determinazione del periodo proprio della struttura considerando la massa complessiva concentrata a 1/2 H, modulo elastico assunto pari a 0,1E, e struttura resistente costituita dai soli “maschi murari” delle pareti parallele all’azione del sisma 168 7.3 Calcolo del periodo proprio della struttura approssimato utilizzando espressioni analitiche 174 7.3.1 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente un peso P gravante all’estremo libero 174 7.3.1.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 174 7.3.1.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 177 7.3.1.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 179 7.3.2 Approssimazione della struttura ad una mensola incastrata alla base, di peso Q=ql, avente un peso P gravante all’estremo libero e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 181 7.3.2.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 181 7.3.2.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 186 7.3.3 Approssimazione della struttura ad un portale avente peso Qp = peso di un piedritto, Qt=peso del traverso e un peso P gravante sul traverso medesimo 191 7.3.3.1 Riferimenti teorici: sostituzione di masse distribuite con masse concentrate 191 7.3.3.2 Applicazione allo specifico caso di studio in esame con modulo ellastico E=300000 kg/cm2 192 7.3.3.3 Applicazione allo specifico caso di studio in esame con modulo ellastico E=30000 kg/cm2 194 7.3.4 Approssimazione della struttura ad un portale di peso Qp = peso di un piedritto, Qt=peso del traverso e avente un peso P gravante sul traverso medesimo e struttura resistente costituita dai soli “maschi murari”delle pareti parallele all’azione del sisma 196 7.3.4.1 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 196 7.3.4.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 201 7.3.5 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente le masse m1,m2....mn concentrate nei punti 1,2….n 206 7.3.5.1 Riferimenti teorici: metodo approssimato 206 7.3.5.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 207 7.3.5.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 209 7.3.6 Approssimazione della struttura ad un telaio deformabile con tavi infinitamente rigide 211 7.3.6.1 Riferimenti teorici: vibrazioni dei telai 211 7.3.6.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 212 7.3.6.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 215 7.3.7 Approssimazione della struttura ad una mensola incastrata di peso Q=ql avente masse m1,m2....mn concentrate nei punti 1,2….n e studiata come un sistema continuo 218 7.3.7.1 Riferimenti teorici: metodo energetico; Masse ripartite e concentrate; Formula di Dunkerley 218 7.3.7.1.1 Il metodo energetico 218 7.3.7.1.2 Masse ripartite e concentrate. Formula di Dunkerley 219 7.3.7.2 Applicazione allo specifico caso di studio in esame con modulo elastico E=300000 kg/cm2 221 7.3.7.3 Applicazione allo specifico caso di studio in esame con modulo elastico E=30000 kg/cm2 226 7.4 Calcolo del periodo della struttura approssimato mediante telaio equivalente 232 7.4.1 Dati geometrici relativi al telaio equivalente e determinazione dei carichi agenti su di esso 232 7.4.1.1 Determinazione del periodo proprio della struttura assumendo diversi valori del modulo elastico E 233 7.5 Conclusioni 234 7.5.1 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura ad un grado di libertà 234 7.5.2 Comparazione dei risultati relativi alla schematizzazione dell’edificio con una struttura a più gradi di libertà e a sistema continuo 236 8. ANALISI DEL COMPORTAMENTO SISMICO DELLA STRUTTURA 239 8.1 Modello con shell costituite da un solo layer 239 8.1.1 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,1g 239 8.1.1.1 Generalità 239 8.1.1.2 Sollecitazioni e tensioni sulla sezione di base 242 8.1.1.2.1 Combinazione di carico ”Carichi verticali più Spettro di Risposta scalato ad un valore di PGA pari a 0,1g” 242 8.1.1.2.2 Combinazione di carico ”Spettro di Risposta scalato ad un valore di 0,1g di PGA” 245 8.1.1.3 Spostamenti di piano 248 8.1.1.4 Accelerazioni di piano 248 8.1.2 Analisi Time-History lineare con accelerogramma caratterizzato da un valore di PGA pari a 0,1g 249 8.1.2.1 Generalità 249 8.1.2.2 Sollecitazioni e tensioni sulla sezione di base 251 8.1.2.2.1 Combinazione di carico ” Carichi verticali più Accelerogramma agente in direzione Ye avente una PGA pari a 0,1g” 251 8.1.2.2.2 Combinazione di carico ” Accelerogramma agente in direzione Y avente un valore di PGA pari a 0,1g ” 254 8.1.2.3 Spostamenti di piano assoluti 257 8.1.2.4 Spostamenti di piano relativi 260 8.1.2.5 Accelerazioni di piano assolute 262 8.1.3 Analisi dinamica modale con spettro di risposta avente un valore di PGA pari a 0,3g 264 8.1.3.1 Generalità 264 8.1.3.2 Sollecitazioni e tensioni sulla sezione di base 265 8.1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supersedes PA No. 292, "A Guide for Planning and Equipping School Lunchrooms."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Research indicates that a diet rich in whole grains may reduce the risk of prevalent chronic diseases, including cardiovascular disease, diabetes, and some cancers, and that risk for these diseases varies by ethnicity. The objective of the current study was to identify major dietary sources of grains and describe their contribution to B vitamins in five ethnic groups. Methods. A cross-sectional mail survey was used to collect data from participants in the Multiethnic Cohort Study in Hawaii and Los Angeles County, United States, from 1993 to 1996. Dietary intake data collected using a quantitative food frequency questionnaire was available for 186,916 participants representing five ethnic groups (African American, Latino, Japanese American, Native Hawaiian and Caucasian) aged 45-75 years. The top sources of grain foods were determined, and their contribution to thiamin, riboflavin, niacin, vitamin B6, and folic acid intakes were analyzed. Results: The top source of whole grains was whole wheat/rye bread for all ethnic-sex groups, followed by popcorn and cooked cereals, except for Native Hawaiian men and Japanese Americans, for whom brown/wild rice was the second top source; major contributors of refined grains were white rice and white bread, except for Latinos. Refined grain foods contributed more to grain consumption (27.1-55.6%) than whole grain foods (7.4-30.8%) among all ethnic-sex groups, except African American women. Grain foods made an important contribution to the intakes of thiamin (30.2-45.9%), riboflavin (23.1-29.2%), niacin (27.1-35.8%), vitamin B6 (22.9-27.5%), and folic acid (23.3-27.7%). Conclusions: This is the first study to document consumption of different grain sources and their contribution to B vitamins in five ethnic groups in the U.S. Findings can be used to assess unhealthful food choices, to guide dietary recommendations, and to help reduce risk of chronic diseases in these populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

L'elaborato espone la progettazione di una macchina automatica e propone uno strumento per il calcolo del tempo delle sua produzione.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le macchine automatiche per il confezionamento sono sistemi complessi composti da molte parti soggette a usura. Con ritmi di produzione di migliaia di pezzi l’ora, l’eventualità di un guasto e del conseguente fermo macchina, può avere ripercussioni economiche considerevoli per un’azienda. Sempre più risorse, per tale motivo, vengono dedicate allo sviluppo di tecniche per incrementare l’affidabilità dei macchinari, e che riducano al contempo, il numero e la durata degli interventi manutentivi. In tal senso, le tecniche di manutenzione predittiva permettono di prevedere, con un certo grado di accuratezza, il tempo di vita residuo dei componenti delle macchine; consentendo l’ottimizzazione della programmazione degli interventi di manutenzione. Appositi sensori installati sui macchinari permettono l’acquisizione di dati, la cui analisi è alla base di tali tecniche. L'elaborato descrive il progetto e la realizzazione di un’infrastruttura software, nell’ambiente di sviluppo Matlab, per l’elaborazione automatizzata di dati di vibrazione. Il sistema proposto, attraverso il monitoraggio dei parametri rms e kurtosis, consiste in strumento di ausilio per la diagnostica di cuscinetti. Il progetto è stato realizzato sulla base di veri dati storici messi a disposizione da un'azienda del settore. L’elaborato affronta inizialmente il problema dell’accuratezza e affidabilità dei campioni, proponendo soluzioni pratiche per la valutazione della qualità e selezione automatica dei dati. Segue la descrizione del processo di estrapolazione dei parametri sopraccitati, nel caso di cuscinetti in moto non stazionario, con profilo di velocità periodico. Nella terza parte è discussa la metodologia con cui istruire il sistema affinché possa, attraverso la redazione di report sullo stato dei componenti, fungere da strumento di diagnosi. L’ultimo capitolo descrive gli strumenti del toolbox per l’analisi dati che è stato realizzato allo scopo di aumentare potenzialità del sistema di diagnostica.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

L’attività della tesi riguarda le protesi mioelettriche, gli arti protesici maggiormente diffusi, le quali sono descrivibili come arti robotici in cui i segmenti artificiali sono attuati da giunti elettromeccanici alimentati da batterie ricaricabili ed attivati mediante segnali elettromiografici (segnali elettrici generati dalla contrazione dei muscoli). Tali protesi di arto superiore attualmente disponibili in commercio potrebbero essere inadeguate per una riabilitazione soddisfacente di alcuni pazienti con una amputazione di alto livello che richiedono una elevata funzionalità nella vita quotidiana. In questo contesto si inserisce l’attività di ricerca del Centro Protesi INAIL di Budrio di Vigorso, Bologna, e dell’Università di Bologna i quali stanno sviluppando nuovi arti protesici con il progetto a lungo termine di rendere disponibili svariate soluzioni di protesi di arto superiore in grado di soddisfare la maggior parte delle richieste degli amputati. Lo scopo di questa tesi è l’introduzione di un nuovo rotatore omerale attivo da integrare alla protesi di arto superiore disponibile presso i nostri laboratori. Per ottenere questo risultato è stata utilizzata una procedura di progettazione già consolidata in attività precedenti per lo sviluppo di una protesi di spalla a due gradi di libertà. Differenti modelli cinematici sono stati studiati tramite analisi cinematiche per determinare l’incremento delle prestazioni a seguito dell’introduzione del nuovo rotatore omerale attivo. Sono state inoltre condotte analisi cinetostatiche per definire le specifiche tecniche di riferimento (in termini di carichi agenti sul rotatore omerale) e per guidare il dimensionamento della catena di trasmissione di potenza del nuovo dispositivo protesico. Ulteriori specifiche tecniche sono state considerate per garantire l’irreversibilità spontanea del moto sotto carichi esterni (quando i giunti attivi della protesi non sono alimentati), per salvaguardare l’incolumità del paziente in caso di caduta, per misurare la posizione angolare del rotatore omerale (in modo da implementare strategie di controllo in retroazione) e per limitare i consumi e la rumorosità del dispositivo. Uno studio di fattibilità ha permesso la selezione della architettura ottimale della catena di trasmissione di potenza per il nuovo rotatore omerale. I criteri di scelta sono stati principalmente la limitazione del peso e dell’ingombro del nuovo dispositivo protesico. Si è quindi proceduto con la progettazione di dettaglio alla quale è seguita la costruzione di un prototipo del nuovo rotatore omerale presso i nostri laboratori. La tesi tratta infine una attività preliminare di sperimentazione che ha permesso di fare considerazioni sulle prestazioni del prototipo ed osservazioni importanti per le successive attività di revisione ed ottimizzazione del progetto del rotatore omerale.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In un quadro internazionale di forte interesse verso uno sviluppo sostenibile e sfide energetiche per il futuro, il DIEM, in collaborazione con altri istituti di ricerca ed imprese private, sta progettando l’integrazione di componentistica avanzata su di una caldaia alimentata a biomasse. Lo scopo finale è quello di realizzare una caldaia a biomasse che produca energia in maniera più efficiente e con un impatto ambientale ridotto. L’applicazione è indirizzata inizialmente verso caldaie di piccola-media taglia (fino a 350 kW termici) vista la larga diffusione di questa tipologia di impianto. La componentistica in oggetto è: - filtro sperimentale ad alta efficienza per la rimozione del particolato; - celle a effetto Seebeck per la produzione di energia elettrica direttamente da energia termica senza parti meccaniche in movimento; - pompa Ogden per la produzione di energia meccanica direttamente da energia termica; La finalità dell’attività di ricerca è la progettazione dell’integrazione dei suddetti dispositivi con una caldaia a biomassa da 290 kW termici per la realizzazione di un prototipo di caldaia stand-alone ad impatto ambientale ridotto: in particolare, la caldaia è in grado, una volta raggiunte le condizioni di regime, di autoalimentare le proprie utenze elettriche, garantendo il funzionamento in sicurezza in caso di black-out o consentendo l’installazione della caldaia medesima in zone remote e prive di allaccio alla rete elettrica. Inoltre, la caldaia può fornire, tramite l'utilizzo di una pompa a vapore o pompa Ogden, energia meccanica per il pompaggio di fluidi: tale opportunità si ritiene particolarmente interessante per l'integrazione della caldaia nel caso di installazione in ambito agricolo. Infine, l'abbinamento di un filtro ad alta efficienza e basso costo consente l'abbattimento delle emissioni inquinanti, favorendo una maggiore diffusione della tecnologia senza ulteriori impatti sull'ambiente.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Negli ultimi anni si è assistito ad un notevole sviluppo e diffusione dei sistemi di produzione di energia rinnovabile, in particolar modo di sistemi eolici e fotovoltaici. La sempre maggior richiesta di energia e la necessità di far fronte ai problemi di inquinamento sempre più intenso, a causa dei combustibili fossili, ha portato ad una crescita nell’interesse ad adottare queste nuove tecnologie per il sostentamento energetico della popolazione. In seguito all’adozione di tali sistemi si è verificata un’intensificazione della ricerca e dello sviluppo tecnologico in tale ambito al fine di massimizzare la produzione dell’energia. Un ruolo chiave nella gestione dell’energia ed in particolar modo l’interfacciamento del sistema di produzione con il carico è svolto elettronica di potenza. L’obiettivo principale della ricerca in tale ambito consiste nella individuazione di nuove tecnologie che permettano un incremento dell’efficienza di conversione anche di soli pochi punti percentuale. L’attività di tesi, svolta presso il LEMAD (Laboratorio di Macchine e Azionamenti del Dipartimento DEI), è stata quindi focalizzata nella progettazione e in seguito realizzazione di un convertitore per applicazioni fotovoltaiche. L’interesse nei confronti delle nuovetecnologie ha portato ad una scelta innovativa per quanto riguarda la configurazione dell’inverter costituente il convertitore. Tale configurazione, che prende il nome di Full Bridge DC Bypass o più semplicemente ponte H6, ha permesso la realizzazione di un convertitore compatto poiché non necessitante di un trasformatore per garantire l’isolamento tra i moduli PV e la rete. Inoltre l’adozione di due switch aggiuntivi rispetto ad un comune ponte H ha garantito una notevole riduzione delle perdite dovute alla tensione di modo comune(CMV)con conseguente incremento dell’efficienza. La ricerca di nuove tecnologie non è stata concentrata solamente nello studio di nuove configurazioni di inverter ma anche nell’individuazione di innovativi dispositivi di potenza. In particolar modo il silicon carbide o SiC ha dimostrato in diverse occasioni di essere un materiale superiore al silicio nelle applicazioni di potenza. Sono stati quindi realizzati due convertitori utilizzanti due differenti dispositivi di potenza (MOSFET in SiC e IGBT in Si)in modo tale da determinare le diverse prestazioni. Un ulteriore studio è stato svolto sulle tecniche di modulazione al fine di valutarne le differenti caratteristiche ed individuare quella più conveniente nella conversione utilizzante il ponte H6.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

L’obiettivo di questa tesi è illustrare quali siano stati i metodi di studio e le soluzioni adottate per ottimizzare gli impianti di raffreddamento e lubrificazione della monoposto da competizione sviluppata dal team Unibo Motorsport, in preparazione alla stagione di gara 2016 della Formula SAE®. Inizialmente saranno analizzate le principali problematiche di entrambi gli impianti attraverso simulazioni CFD (Computational Fluid Dynamics) e dati telemetrici degli anni passati. In seguito, saranno mostrati i diversi procedimenti di progettazione e il completamento degli impianti unitamente ad una loro valutazione economica. Infine, per verificare l’effettivo successo delle operazioni svolte a bordo vettura, verranno mostrate acquisizioni telemetriche relative alle gare ed altre simulazioni relative alle nuove geometrie sviluppate. Un altro obiettivo della trattazione è mettere a disposizione dei futuri membri del reparto motore un documento che contenga tutte le considerazioni fatte a riguardo degli impianti studiati. Questo è fondamentale all’interno di un ambiente come un team di Formula SAE®, dove ogni anno si ha il ricambio di una buona parte dei membri. Se gli studi svolti sugli impianti venissero persi, i nuovi arrivati si troverebbero a mettere le mani su un qualcosa di sconosciuto e lo sviluppo della vettura negli anni si troverebbe enormemente rallentato. Il “learning by doing” che ha sempre caratterizzato questo progetto viene infatti affiancato con armonia dalla possibilità di consultare esperienze pregresse relative al caso di studio considerato.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Negli impianti utilizzati per la produzione di energia elettrica che sfruttano l'energia solare, quali la tecnologia solare a concentrazione (Solare Termodinamico) sviluppata da ENEA, per minimizzare le dispersioni di calore è necessaria una elevata selettività spettrale. Per ottimizzare l'efficienza dell'impianto è quindi necessario lo sviluppo di materiali innovativi, in grado di minimizzare la quantità di energia dispersa per riflessione. In questo studio, per incrementare la trasmittanza solare dei componenti in vetro presenti nei tubi ricevitori dell'impianto, sono state utilizzate tipologie diverse di rivestimenti antiriflesso (multistrato e a singolo strato poroso). I rivestimenti sono stati ottenuti mediante via umida, con tecnica di sol-gel dip-coating. I sol coprenti sono stati preparati da alcossidi o sali metallici precursori degli ossidi che costituiscono il rivestimento. Sono state approfondite sia la fase di sintesi dei sol coprenti, sia la fase di deposizione sul substrato, che ha richiesto la progettazione e realizzazione di una apparecchiatura prototipale, ossia di un dip-coater in grado di garantire un accurato controllo della velocità di emersione e dell'ambiente di deposizione (temperatura e umidità). Il materiale multistrato applicato su vetro non ha migliorato la trasmittanza del substrato nell'intervallo di lunghezze d'onda dello spettro solare, pur presentando buone caratteristiche antiriflesso nell'intervallo dell'UV-Vis. Al contrario, l'ottimizzazione del rivestimento a base di silice porosa, ha portato all'ottenimento di indici di rifrazione molto bassi (1.15 to 1.18) e ad un incremento della trasmittanza solare dal 91.5% al 96.8%, efficienza superiore agli attuali rivestimenti disponibili in commercio.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analisi, progettazione e realizzazione di un applicativo per la distribuzione di dati finanziari in realtime attraverso l'utilizzo della tecnologia multicast in contesto produttivo reale con studio grafico dei miglioramenti qualitativi ottenuti.