986 resultados para Product reviews
Resumo:
A global, online quantitative study among 300 consumers of digital technology products found the most reliable information sources were friends, family or word of mouth (WOM) from someone they knew, followed by expert product reviews, and product reviews written by other consumers. The most unreliable information sources were advertising or infomercials, automated recommendations based on purchasing patterns or retailers. While a very small number of consumers evaluated products online, rating of products and online discussions were more frequent activities. The most popular social media websites for reviews were Facebook, Twitter, Amazon and e-Bay, indicating the importance of WOM in social networks and online media spaces that feature product reviews as it is the most persuasive piece of information in both online and offline social networks. These results suggest that ‘social customers’ must be considered as an integral part of a marketing strategy.
Resumo:
The impacts of online collaboration and networking among consumers on social media (SM) websites which are featuring user generated content in a form of product reviews, ratings and recommendations (PRRR) as an emerging information source is the focus of this research. The proliferation of websites where consumers are able to post the PRRR and share them with other consumers has altered the marketing environment in which companies, marketers and advertisers operate. This cross-sectional study explored consumers’ attitudes and behaviour toward various information sources (IS), used in the information search phase of the purchasing decision-making process. The study was conducted among 300 international consumers. The results were showing that personal and public IS were far more reliable than commercial. The findings indicate that traditional marketing tools are no longer viable in the SM milieu.
Resumo:
Online business or Electronic Commerce (EC) is getting popular among customers today, as a result large number of product reviews have been posted online by the customers. This information is very valuable not only for prospective customers to make decision on buying product but also for companies to gather information of customers’ satisfaction about their products. Opinion mining is used to capture customer reviews and separated this review into subjective expressions (sentiment word) and objective expressions (no sentiment word). This paper proposes a novel, multi-dimensional model for opinion mining, which integrates customers’ characteristics and their opinion about any products. The model captures subjective expression from product reviews and transfers to fact table before representing in multi-dimensions named as customers, products, time and location. Data warehouse techniques such as OLAP and Data Cubes were used to analyze opinionated sentences. A comprehensive way to calculate customers’ orientation on products’ features and attributes are presented in this paper.
Resumo:
Social media platforms, that foster user generated content, have altered the ways consumers search for product related information. Conducting online searches, reading product reviews, and comparing products ratings, is becoming a more common information seeking pathway. This research demonstrates that info-active consumers are becoming less reliant on information provided by retailers or manufacturers, hence marketing generated online content may have a reduced impact on their purchasing behaviour. The results of this study indicate that beyond traditional methods of segmenting consumers, in the online context, new classifications such as info-active and info-passive would be beneficial in digital marketing. This cross-sectional, mixed-methods study is based on 43 in-depth interviews and an online survey with 500 consumers from 30 countries.
Resumo:
[ES] E-NATURAL es un portal web donde se localizan empresas del sector del turismo rural, en este portal se publicitan y venden sus productos y servicios. Cada empresa dispone de un espacio web único e individual para poder promocionarse en internet. Mediante un buscador, permite a los usuarios acceder a los contenidos de cada empresa registrada en el sistema. Este buscador es abierto y cualquier usuario no registrado puede consultar la información acerca de productos y servicios ofertados, y disponer de toda la información relacionada con cada empresa. Las empresas registradas disponen de un sistema de información completo de fácil manejo e intuitivo que permite autogestionar todo el contenido de los productos y páginas web de cada empresa individualmente. También se incluye un sistema de gestión de contenidos que genera páginas web profesionales automáticamente, con posibilidad de edición de páginas. Por otra parte, los usuarios registrados podrán realizar: reservas de productos mediante un completo sistema de gestión de reservas, con especial atención al alojamiento, compras de productos mediante un completo sistema de compras, adaptado a la plataforma Paypal, clasificaciones de productos y páginas web del sistema, utilizando votaciones mediante rankings. La plataforma contiene un sistema de gestión de comentarios sobre productos y páginas web de empresas que permite seleccionar la visualización y la no visualización del contenido. Por último, los usuarios podrán compartir información sobre contenidos publicados en las páginas, mediante el uso de redes sociales como Twitter, Google+ y Facebook.
Resumo:
This article presents two novel approaches for incorporating sentiment prior knowledge into the topic model for weakly supervised sentiment analysis where sentiment labels are considered as topics. One is by modifying the Dirichlet prior for topic-word distribution (LDA-DP), the other is by augmenting the model objective function through adding terms that express preferences on expectations of sentiment labels of the lexicon words using generalized expectation criteria (LDA-GE). We conducted extensive experiments on English movie review data and multi-domain sentiment dataset as well as Chinese product reviews about mobile phones, digital cameras, MP3 players, and monitors. The results show that while both LDA-DP and LDAGE perform comparably to existing weakly supervised sentiment classification algorithms, they are much simpler and computationally efficient, rendering themmore suitable for online and real-time sentiment classification on the Web. We observed that LDA-GE is more effective than LDA-DP, suggesting that it should be preferred when considering employing the topic model for sentiment analysis. Moreover, both models are able to extract highly domain-salient polarity words from text.
Resumo:
In recent years, the Web 2.0 has provided considerable facilities for people to create, share and exchange information and ideas. Upon this, the user generated content, such as reviews, has exploded. Such data provide a rich source to exploit in order to identify the information associated with specific reviewed items. Opinion mining has been widely used to identify the significant features of items (e.g., cameras) based upon user reviews. Feature extraction is the most critical step to identify useful information from texts. Most existing approaches only find individual features about a product without revealing the structural relationships between the features which usually exist. In this paper, we propose an approach to extract features and feature relationships, represented as a tree structure called feature taxonomy, based on frequent patterns and associations between patterns derived from user reviews. The generated feature taxonomy profiles the product at multiple levels and provides more detailed information about the product. Our experiment results based on some popularly used review datasets show that our proposed approach is able to capture the product features and relations effectively.
Resumo:
We present in this article an automated framework that extracts product adopter information from online reviews and incorporates the extracted information into feature-based matrix factorization formore effective product recommendation. In specific, we propose a bootstrapping approach for the extraction of product adopters from review text and categorize them into a number of different demographic categories. The aggregated demographic information of many product adopters can be used to characterize both products and users in the form of distributions over different demographic categories. We further propose a graphbased method to iteratively update user- and product-related distributions more reliably in a heterogeneous user-product graph and incorporate them as features into the matrix factorization approach for product recommendation. Our experimental results on a large dataset crawled from JINGDONG, the largest B2C e-commerce website in China, show that our proposed framework outperforms a number of competitive baselines for product recommendation.
Resumo:
Currently, recommender systems (RS) have been widely applied in many commercial e-commerce sites to help users deal with the information overload problem. Recommender systems provide personalized recommendations to users and thus help them in making good decisions about which product to buy from the vast number of product choices available to them. Many of the current recommender systems are developed for simple and frequently purchased products like books and videos, by using collaborative-filtering and content-based recommender system approaches. These approaches are not suitable for recommending luxurious and infrequently purchased products as they rely on a large amount of ratings data that is not usually available for such products. This research aims to explore novel approaches for recommending infrequently purchased products by exploiting user generated content such as user reviews and product click streams data. From reviews on products given by the previous users, association rules between product attributes are extracted using an association rule mining technique. Furthermore, from product click streams data, user profiles are generated using the proposed user profiling approach. Two recommendation approaches are proposed based on the knowledge extracted from these resources. The first approach is developed by formulating a new query from the initial query given by the target user, by expanding the query with the suitable association rules. In the second approach, a collaborative-filtering recommender system and search-based approaches are integrated within a hybrid system. In this hybrid system, user profiles are used to find the target user’s neighbour and the subsequent products viewed by them are then used to search for other relevant products. Experiments have been conducted on a real world dataset collected from one of the online car sale companies in Australia to evaluate the effectiveness of the proposed recommendation approaches. The experiment results show that user profiles generated from user click stream data and association rules generated from user reviews can improve recommendation accuracy. In addition, the experiment results also prove that the proposed query expansion and the hybrid collaborative filtering and search-based approaches perform better than the baseline approaches. Integrating the collaborative-filtering and search-based approaches has been challenging as this strategy has not been widely explored so far especially for recommending infrequently purchased products. Therefore, this research will provide a theoretical contribution to the recommender system field as a new technique of combining collaborative-filtering and search-based approaches will be developed. This research also contributes to a development of a new query expansion technique for infrequently purchased products recommendation. This research will also provide a practical contribution to the development of a prototype system for recommending cars.
Resumo:
Different reputation models are used in the web in order to generate reputation values for products using uses' review data. Most of the current reputation models use review ratings and neglect users' textual reviews, because it is more difficult to process. However, we argue that the overall reputation score for an item does not reflect the actual reputation for all of its features. And that's why the use of users' textual reviews is necessary. In our work we introduce a new reputation model that defines a new aggregation method for users' extracted opinions about products' features from users' text. Our model uses features ontology in order to define general features and sub-features of a product. It also reflects the frequencies of positive and negative opinions. We provide a case study to show how our results compare with other reputation models.
Resumo:
As of today, online reviews have become more and more important in decision making process. In recent years, the problem of identifying useful reviews for users has attracted significant attentions. For instance, in order to select reviews that focus on a particular feature, researchers proposed a method which extracts all associated words of this feature as the relevant information to evaluate and find appropriate reviews. However, the extraction of associated words is not that accurate due to the noise in free review text, and this affects the overall performance negatively. In this paper, we propose a method to select reviews according to a given feature by using a review model generated based upon a domain ontology called product feature taxonomy. The proposed review model provides relevant information about the hierarchical relationships of the features in the review which captures the review characteristics accurately. Our experiment results based on real world review dataset show that our approach is able to improve the review selection performance according to the given criteria effectively.
Resumo:
Text is the main method of communicating information in the digital age. Messages, blogs, news articles, reviews, and opinionated information abounds on the Internet. People commonly purchase products online and post their opinions about purchased items. This feedback is displayed publicly to assist others with their purchasing decisions, creating the need for a mechanism with which to extract and summarize useful information for enhancing the decision-making process. Our contribution is to improve the accuracy of extraction by combining different techniques from three major areas, named Data Mining, Natural Language Processing techniques and Ontologies. The proposed framework sequentially mines product’s aspects and users’ opinions, groups representative aspects by similarity, and generates an output summary. This paper focuses on the task of extracting product aspects and users’ opinions by extracting all possible aspects and opinions from reviews using natural language, ontology, and frequent “tag” sets. The proposed framework, when compared with an existing baseline model, yielded promising results.
Resumo:
As of today, user-generated information such as online reviews has become increasingly significant for customers in decision making process. Meanwhile, as the volume of online reviews proliferates, there is an insistent demand to help the users tackle the information overload problem. In order to extract useful information from overwhelming reviews, considerable work has been proposed such as review summarization and review selection. Particularly, to avoid the redundant information, researchers attempt to select a small set of reviews to represent the entire review corpus by preserving its statistical properties (e.g., opinion distribution). However, one significant drawback of the existing works is that they only measure the utility of the extracted reviews as a whole without considering the quality of each individual review. As a result, the set of chosen reviews may consist of low-quality ones even its statistical property is close to that of the original review corpus, which is not preferred by the users. In this paper, we proposed a review selection method which takes review quality into consideration during the selection process. Specifically, we examine the relationships between product features based upon a domain ontology to capture the review characteristics based on which to select reviews that have good quality and preserve the opinion distribution as well. Our experimental results based on real world review datasets demonstrate that our proposed approach is feasible and able to improve the performance of the review selection effectively.
Resumo:
Chill treatment of potato tubers for 8 days induced mitochondrial O-2 consumption by cyanide-insensitive alternative oxidase (AOX). About half of the total O-2 consumption in such mitochondria was found to be sensitive to salicylhydroxamate (SHAM), a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive O-2 consumption by nearly half, and addition at the end of the reaction released half of the O-2 consumed by AOX, both typical of catalase action on H2O2. This reaffirmed that the product of reduction of O-2 by plant AOX was H2O2 as found earlier and not H2O as reported in some recent reviews.