1000 resultados para Processamento de sinais acústicos submarinos
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neste trabalho, é desenvolvido um método de localização de descargas parciais, em transformadores de potência, baseado no algoritmo GPS (Global Positioning System). Para a análise da estrutura, foi desenvolvido um solftware, no qual as equações diferenciais que representam a propagação de ondas acústicas são resolvidas numericamente através do método Acoustic Finite Difference Time Domain (AFDTD), cujo domínio computacional é truncado através da técnica CPML (Convolutional Perfectly Matched Layer). Os resultados obtidos são comparados a estimativas produzidas utilizando-se sinais elétricos relativos às descargas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
A aquisição experimental de sinais neuronais é um dos principais avanços da neurociência. Por meio de observações da corrente e do potencial elétricos em uma região cerebral, é possível entender os processos fisiológicos envolvidos na geração do potencial de ação, e produzir modelos matemáticos capazes de simular o comportamento de uma célula neuronal. Uma prática comum nesse tipo de experimento é obter leituras a partir de um arranjo de eletrodos posicionado em um meio compartilhado por diversos neurônios, o que resulta em uma mistura de sinais neuronais em uma mesma série temporal. Este trabalho propõe um modelo linear de tempo discreto para o sinal produzido durante o disparo do neurônio. Os coeficientes desse modelo são calculados utilizando-se amostras reais dos sinais neuronais obtidas in vivo. O processo de modelagem concebido emprega técnicas de identificação de sistemas e processamento de sinais, e é dissociado de considerações sobre o funcionamento biofísico da célula, fornecendo uma alternativa de baixa complexidade para a modelagem do disparo neuronal. Além disso, a representação por meio de sistemas lineares permite idealizar um sistema inverso, cuja função é recuperar o sinal original de cada neurônio ativo em uma mistura extracelular. Nesse contexto, são discutidas algumas soluções baseadas em filtros adaptativos para a simulação do sistema inverso, introduzindo uma nova abordagem para o problema de separação de spikes neuronais.
Resumo:
O NAVSTAR/GPS (NAVigation System with Timing And Ranging/Global Po- sitioning System), mais conhecido por GPS, _e um sistema de navegacão baseado em sat_elites desenvolvido pelo departamento de defesa norte-americano em meados de 1970. Criado inicialmente para fins militares, o GPS foi adaptado para o uso civil. Para fazer a localização, o receptor precisa fazer a aquisição de sinais dos satélites visíveis. Essa etapa é de extrema importância, pois é responsável pela detecção dos satélites visíveis, calculando suas respectivas frequências e fases iniciais. Esse processo pode demandar bastante tempo de processamento e precisa ser implementado de forma eficiente. Várias técnicas são utilizadas atualmente, mas a maioria delas colocam em conflito questões de projeto tais como, complexidade computacional, tempo de aquisição e recursos computacionais. Objetivando equilibrar essas questões, foi desenvolvido um método que reduz a complexidade do processo de aquisição utilizando algumas estratégias, a saber, redução do efeito doppler, amostras e tamanho do sinal utilizados, além do paralelismo. Essa estratégia é dividida em dois passos, um grosseiro em todo o espaço de busca e um fino apenas na região identificada previamente pela primeira etapa. Devido a busca grosseira, o limiar do algoritmo convencional não era mais aceitável. Nesse sentido, um novo limiar foi estabelecido baseado na variância dos picos de correlação. Inicialmente, é feita uma busca com pouca precisão comparando a variância dos cinco maiores picos de correlação encontrados. Caso a variância ultrapasse um certo limiar, a região de maior pico torna-se candidata à detecção. Por fim, essa região passa por um refinamento para se ter a certeza de detecção. Os resultados mostram que houve uma redução significativa na complexidade e no tempo de execução, sem que tenha sido necessário utilizar algoritmos muito complexos.