987 resultados para Probability generating function
Resumo:
Mathematics Subject Classification: 33C45.
Resumo:
2000 Mathematics Subject Classification: 33C10, 33-02, 60K25
Resumo:
Using tools of the theory of orthogonal polynomials we obtain the generating function of the generalized Fibonacci sequence established by Petronilho for a sequence of real or complex numbers {Qn} defined by Q0 = 0, Q1 = 1, Qm = ajQm−1 + bjQm−2, m ≡ j (mod k), where k ≥ 3 is a fixed integer, and a0, a1, . . . , ak−1, b0, b1, . . . , bk−1 are 2k given real or complex numbers, with bj #0 for 0 ≤ j ≤ k−1. For this sequence some convergence proprieties are obtained.
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
We give an asymptotic expansion for the Taylor coe±cients of L(P(z)) where L(z) is analytic in the open unit disc whose Taylor coe±cients vary `smoothly' and P(z) is a probability generating function. We show how this result applies to a variety of problems, amongst them obtaining the asymptotics of Bernoulli transforms and weighted renewal sequences.
Resumo:
In this paper, we formulate a flexible density function from the selection mechanism viewpoint (see, for example, Bayarri and DeGroot (1992) and Arellano-Valle et al. (2006)) which possesses nice biological and physical interpretations. The new density function contains as special cases many models that have been proposed recently in the literature. In constructing this model, we assume that the number of competing causes of the event of interest has a general discrete distribution characterized by its probability generating function. This function has an important role in the selection procedure as well as in computing the conditional personal cure rate. Finally, we illustrate how various models can be deduced as special cases of the proposed model. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we study the accumulated claim in some fixed time period, skipping the classical assumption of mutual independence between the variables involved. Two basic models are considered: Model I assumes that any pair of claims are equally correlated which means that the corresponding square-integrable sequence is exchangeable one. Model 2 states that the correlations between the adjacent claims are the same. Recurrence and explicit expressions for the joint probability generating function are derived and the impact of the dependence parameter (correlation coefficient) in both models is examined. The Markov binomial distribution is obtained as a particular case under assumptions of Model 2. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work we will present a model that describes how the number of healthy and unhealthy subjects that belong to a cohort, changes through time when there are occurrences of health promotion campaigns aiming to change the undesirable behavior. This model also includes immigration and emigration components for each group and a component taking into account when a subject that used to perform a healthy behavior changes to perform the unhealthy behavior. We will express the model in terms of a bivariate probability generating function and in addition we will simulate the model. ^ An illustrative example on how to apply the model to the promotion of condom use among adolescents will be created and we will use it to compare the results obtained from the simulations and the results obtained by the probability generating function. ^
Resumo:
Exact closed-form expressions are obtained for the outage probability of maximal ratio combining in η-μ fadingchannels with antenna correlation and co-channel interference. The scenario considered in this work assumes the joint presence of background white Gaussian noise and independent Rayleigh-faded interferers with arbitrary powers. Outage probability results are obtained through an appropriate generalization of the moment-generating function of theη-μ fading distribution, for which new closed-form expressions are provided.
Resumo:
In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10(17) and 10(19) eV and zenith angles up to 65 degrees. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data using events simultaneously observed by the fluorescence and the surface detector of the Pierre Auger Observatory (hybrid events). We validate the Monte Carlo results showing how LTP functions from data are in good agreement with simulations.
Resumo:
2002 Mathematics Subject Classification: 60K25.
Resumo:
The inverse Weibull distribution has the ability to model failure rates which are quite common in reliability and biological studies. A three-parameter generalized inverse Weibull distribution with decreasing and unimodal failure rate is introduced and studied. We provide a comprehensive treatment of the mathematical properties of the new distribution including expressions for the moment generating function and the rth generalized moment. The mixture model of two generalized inverse Weibull distributions is investigated. The identifiability property of the mixture model is demonstrated. For the first time, we propose a location-scale regression model based on the log-generalized inverse Weibull distribution for modeling lifetime data. In addition, we develop some diagnostic tools for sensitivity analysis. Two applications of real data are given to illustrate the potentiality of the proposed regression model.
Resumo:
We study in detail the so-called beta-modified Weibull distribution, motivated by the wide use of the Weibull distribution in practice, and also for the fact that the generalization provides a continuous crossover towards cases with different shapes. The new distribution is important since it contains as special sub-models some widely-known distributions, such as the generalized modified Weibull, beta Weibull, exponentiated Weibull, beta exponential, modified Weibull and Weibull distributions, among several others. It also provides more flexibility to analyse complex real data. Various mathematical properties of this distribution are derived, including its moments and moment generating function. We examine the asymptotic distributions of the extreme values. Explicit expressions are also derived for the chf, mean deviations, Bonferroni and Lorenz curves, reliability and entropies. The estimation of parameters is approached by two methods: moments and maximum likelihood. We compare by simulation the performances of the estimates from these methods. We obtain the expected information matrix. Two applications are presented to illustrate the proposed distribution.
Resumo:
We introduce the log-beta Weibull regression model based on the beta Weibull distribution (Famoye et al., 2005; Lee et al., 2007). We derive expansions for the moment generating function which do not depend on complicated functions. The new regression model represents a parametric family of models that includes as sub-models several widely known regression models that can be applied to censored survival data. We employ a frequentist analysis, a jackknife estimator, and a parametric bootstrap for the parameters of the proposed model. We derive the appropriate matrices for assessing local influences on the parameter estimates under different perturbation schemes and present some ways to assess global influences. Further, for different parameter settings, sample sizes, and censoring percentages, several simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We define martingale and deviance residuals to evaluate the model assumptions. The extended regression model is very useful for the analysis of real data and could give more realistic fits than other special regression models.