847 resultados para Preferred-habitat
Resumo:
Wydział Biologii: Instytut Biologii Środowiska
Resumo:
This booklet describes freshwater fishes found in South Carolina waters, giving information about the fish, its range, preferred habitat, food habits, size and other miscellaneous facts. It also has information on angler ethics, catch & release programs, fishing regulations and aquatic education programs.
Resumo:
Aims of this thesis This study is part of a larger hare project in Finland, which provides answers to basic ecological questions regarding the mountain hare. This study of the ecology of the mountain hare focuses in particular on different levels of managed boreal forest. The feeding habits and intensity of mountain hares in winter are explored, and the connections between mountain hares versus the forest structure are also studied (e.g. habitat use and the importance of different forest layers for hares). The use of the environment by hares at the landscape level was examined (forest patch structures), and the home ranges of mountain hares were studied. Finally, the productivity and survival rate of mountain hare populations were also studied (discussion e.g. predator effects on hare populations). Conclusions Feeding intensity seemed to be highest in the spring-winter, when home ranges were also largest. Favourable food species are covered by snow in winter and the mobility of hares is highest during late winter. A shortage of suitable food species may be problematic for hares, especially during the winter period. In this study mountain hares preferred a dense shrub layer at local level and deciduous and mixed tree forest over coniferous forest at the landscape level. Food and shelter are vital for hares and the preference for particular habitats may also affect the population dynamics of the mountain hare. It would be possible to improve the quality of food and shelter or at least prevent the most negative habitat changes through forest management. At a local level it is also possible to add supplementary food for hares through the winter period. The intensive clearing of young sapling stands and especially the removal of deciduous shrubs and trees reduces the quality of habitats for the mountain hare. Mountain hares primarily live in forest habitat and it is possible that changes in the forest structure play a crucial role in mountain hare habitat preference. Ecological knowledge of the mountain hare is vital to create habitat structure more suitable for the species. More deciduous trees should be saved in managing forests and the mechanical clearing of the shrub layer should be done carefully.
Resumo:
Although maritime regions support a large portion of the world’s human population, their value as habitat for other species is overlooked. Urban structures that are built in the marine environment are not designed or managed for the habitat they provide, and are built without considering the communities of marine organisms that could colonize them (Clynick et al., 2008). However, the urban waterfront may be capable of supporting a significant proportion of regional aquatic biodiversity (Duffy-Anderson et al., 2003). While urban shorelines will never return to their original condition, some scientists think that the habitat quality of urban waterfronts could be significantly improved through further research and some design modifications, and that many opportunities exist to make these modifications (Russel et al., 1983, Goff, 2008). Habitat enhancing marine structures (or HEMS) are a potentially promising approach to address the impact of cities on marine organisms including habitat fragmentation and degradation. HEMS are a type of habitat improvement project that are ecologically engineered to improve the habitat quality of urban marine structures such as bulkheads and docks for marine organisms. More specifically, HEMS attempt to improve or enhance the physical habitat that organisms depend on for survival in the inter- and sub-tidal waterfronts of densely populated areas. HEMS projects are targeted at areas where human-made structures cannot be significantly altered or removed. While these techniques can be used in suburban or rural areas restoration or removal is preferred in these settings, and HEMS are resorted to only if removal of the human-made structure is not an option. Recent research supports the use of HEMS projects. Researchers have examined the communities found on urban structures including docks, bulkheads, and breakwaters. Complete community shifts have been observed where the natural shoreline was sandy, silty, or muddy. There is also evidence of declines in community composition, ecosystem functioning, and increases in non-native species abundances in assemblages on urban marine structures. Researchers have identified two key differences between these substrates including the slope (seawalls are vertical; rocky shores contain multiple slopes) and microhabitat availability (seawalls have very little; rocky shores contain many different types). In response, researchers have suggested designing and building seawalls with gentler slopes or a combination of horizontal and vertical surfaces. Researchers have also suggested incorporating microhabitat, including cavities designed to retain water during low tide, crevices, and other analogous features (Chapman, 2003; Moreira et al., 2006) (PDF contains 4 pages)
Resumo:
This study was designed to examine the habitat use of several species of 0+ cyprinid in the regulated River Great Ouse and to determine the reasons for specific habitat use. In general, all fish species were found associated with the marginal zone, with little diel variation. Use of shallow habitats in the presence of macrophytes correlated well with the distribution of zooplankton in the river channel, the preferred food source of 0+ cyprinids. During the early to late larval phase, all species fed upon rotifers and diatoms. Cladocera, particularly Alona spp. and Chydorus spp., and early instar larvae of Chironomidae, then became prevalent in the diet along with small numbers of Copepoda. Models were developed to determine habitat availability over a range of discharges, using the physical habitat simulation (PHABSIM) component of the Instream Flow Incremental Methodology (IFIM). The results of this analysis revealed that habitat suitable for 0+ fishes comprised a relatively small percentage of the main channel and generally decreased with discharge.
Resumo:
Habitat use by wintering Ruddy Shelduck (Tadorna ferruginea) in Lijiang Lashihai Lake of southwest China was studied from 1 November 1999 to 29 April 2000. We divided habitats into five types-deep water, shallow water, mudflat, grassland and farmland. Shallow water and grassland, with rich food and easily accessible water, were preferred by wintering Ruddy Shelducks, Farmland was preferred in mid-winter but avoided in early winter and late winter. Even in mid-winter, the feeding Ruddy Shelduck on farmland were not equally distributed in fields and preferred wet fields (just irrigated) and avoided dry fields. In dry fields, the distances to water sources had great impact on the feeding distribution. Mudflats were only selected in later winter, coinciding with the growth of water-weeds. Deep-water areas were always avoided. Prohibition of human disturbance and retaining shallow water areas and grassland are important measures to mitigate conflict between Ruddy Sheldruck and local people.
Resumo:
The Mongolian gazelle, Procapra gutturosa, resides in the immense and dynamic ecosystem of the Eastern Mongolian Steppe. The Mongolian Steppe ecosystem dynamics, including vegetation availability, change rapidly and dramatically due to unpredictable precipitation patterns. The Mongolian gazelle has adapted to this unpredictable vegetation availability by making long range nomadic movements. However, predicting these movements is challenging and requires a complex model. An accurate model of gazelle movements is needed, as rampant habitat fragmentation due to human development projects - which inhibit gazelles from obtaining essential resources - increasingly threaten this nomadic species. We created a novel model using an Individual-based Neural Network Genetic Algorithm (ING) to predict how habitat fragmentation affects animal movement, using the Mongolian Steppe as a model ecosystem. We used Global Positioning System (GPS) collar data from real gazelles to “train” our model to emulate characteristic patterns of Mongolian gazelle movement behavior. These patterns are: preferred vegetation resources (NDVI), displacement over certain time lags, and proximity to human areas. With this trained model, we then explored how potential scenarios of habitat fragmentation may affect gazelle movement. This model can be used to predict how fragmentation of the Mongolian Steppe may affect the Mongolian gazelle. In addition, this model is novel in that it can be applied to other ecological scenarios, since we designed it in modules that are easily interchanged.
Resumo:
The influence of predation in structuring ecological communities can be informed by examining the shape and magnitude of the functional response of predators towards prey. We derived functional responses of the ubiquitous intertidal amphipod Echinogammarus marinus towards one of its preferred prey species, the isopod Jaera nordmanni. First, we examined the form of the functional response where prey were replaced following consumption, as compared to the usual experimental design where prey density in each replicate is allowed to deplete. E. marinus exhibited Type II functional responses, i.e. inversely density-dependent predation of J. nordmanni that increased linearly with prey availability at low densities, but decreased with further prey supply. In both prey replacement and non-replacement experiments, handling times and maximum feeding rates were similar. The non-replacement design underestimated attack rates compared to when prey were replaced. We then compared the use of Holling’s disc equation (assuming constant prey density) with the more appropriate Rogers’ random predator equation (accounting for prey depletion) using the prey non-replacement data. Rogers’ equation returned significantly greater attack rates but lower maximum feeding rates, indicating that model choice has significant implications for parameter estimates. We then manipulated habitat complexity and found significantly reduced predation by the amphipod in complex as opposed to simple habitat structure. Further, the functional response changed from a Type II in simple habitats to a sigmoidal, density-dependent Type III response in complex habitats, which may impart stability on the predator−prey interaction. Enhanced habitat complexity returned significantly lower attack rates, higher handling times and lower maximum feeding rates. These findings illustrate the sensitivity of the functional response to variations in prey supply, model selection and habitat complexity and, further, that E. marinus could potentially determine the local exclusion and persistence of prey through habitat-mediated changes in its predatory functional responses.
Resumo:
Among the decapod crustaceans, brachyuran crabs or the true crabs occupy a very significant position due to their ecological and economic value. Crabs support a sustenance fishery in India, even though their present status is not comparable to that of shrimps and lobsters. They are of great demand in the domestic market as well as in the foreign markets. In addition to this, brachyuran crabs are of great ecological importance. They form the conspicuous members of the mangrove ecosystems and play a significant role in detritus formation, nutrient recycling and dynamics of the ecosystem. Considering all these factors, crabs are often considered to be the keystone species of the mangrove ecosystem. Though several works have been undertaken on brachyuran crabs world –wide as well as within the country, reports on the brachyuran crabs of Kerala waters are very scanty. Most of the studies done on brachyuran fauna were from the east coast of India and a very few works from the west coast. Among the edible crabs, mud crabs belonging to genus Scylla forms the most important due to their large size and taste. They are being exported on a large scale to the foreign markets like Singapore, Malaysia and Hong Kong. Kerala is the biggest supplier of live mud crabs and Chennai is the major centre of live mud crab export. However, there exists considerable confusion regarding the identification of mud crabs because of the subtle morphological differences between the species.In this context, an extensive study was undertaken on the brachyuran fauna of Cochin Backwaters, Kerala, India, to have a basic knowledge on their diversity, habitat preference and systematics. The study provides an attempt to resolve the confusion pertaining in the species identification of mud crabs belonging to Genus Scylla. Diversity study revealed the occurrence of 23 species of brachyuran crabs belonging to 16 genera and 8 families in the study area Cochin Backwaters. Among the families, the highest number of species was recorded from Family Portunidae .Among the 23 crab species enlisted from the Cochin backwaters, 5 species are of commercial importance and contribute a major share to the crustacean fishery of the Cochin region. It was observed that, the Cochin backwaters are invaded by certain marine migrant species during the Post monsoon and Pre monsoon periods and they are found to disappear with the onset of monsoon. The study reports the occurrence of the ‘herring bow crab’ Varuna litterata in the Cochin backwaters for the first time. Ecological studies showed that the substratum characteristics influence the occurrence, distribution and abundance of crabs in the sampling stations rather than water quality parameters. The variables which affected the crab distribution the most were Salinity, moisture content in the sediment, organic carbon and the sediment texture. Besides the water and sediment quality parameters, the most important factor influencing the distribution of crabs is the presence of mangroves. The study also revealed that most of the crabs encountered from the study area preferred a muddy substratum, with high organic carbon content and high moisture content. In the present study, an identification key is presented for the brachyuran crabs occurring along the study area the Cochin backwaters and the associated mangrove patches, taking into account the morphological characters coupled with the structure of third maxillipeds, first pleopods of males and the shape of male abdomen. Morphological examination indicated the existence of a morphotype which is comparable with the morphological features of S. tranquebarica, the morphometric study and the molecular analyses confirmed the non existence of S. tranquebarica in the Cochin backwaters.
Resumo:
Common Loon (Gavia immer) is considered an emblematic and ecologically important example of aquatic-dependent wildlife in North America. The northern breeding range of Common Loon has contracted over the last century as a result of habitat degradation from human disturbance and lakeshore development. We focused on the state of New Hampshire, USA, where a long-term monitoring program conducted by the Loon Preservation Committee has been collecting biological data on Common Loon since 1976. The Common Loon population in New Hampshire is distributed throughout the state across a wide range of lake-specific habitats, water quality conditions, and levels of human disturbance. We used a multiscale approach to evaluate the association of Common Loon and breeding habitat within three natural physiographic ecoregions of New Hampshire. These multiple scales reflect Common Loon-specific extents such as territories, home ranges, and lake-landscape influences. We developed ecoregional multiscale models and compared them to single-scale models to evaluate model performance in distinguishing Common Loon breeding habitat. Based on information-theoretic criteria, there is empirical support for both multiscale and single-scale models across all three ecoregions, warranting a model-averaging approach. Our results suggest that the Common Loon responds to both ecological and anthropogenic factors at multiple scales when selecting breeding sites. These multiscale models can be used to identify and prioritize the conservation of preferred nesting habitat for Common Loon populations.
Resumo:
Ecological traps are attractive population sinks created when anthropogenic habitat alteration inadvertently creates a mismatch between the attractiveness of a habitat based upon its settlement cues, and its current value for survival or reproduction. Traps represent a new threat to the conservation of native species, yet little attention has been given to developing practical approaches to eliminating them. In the northern Rocky Mountains of Montana, Olive-sided Flycatchers (Contopus cooperi) prefer to settle in patches of selectively harvested forest versus burned forest despite the lower reproductive success and higher nest predation risk associated with the former habitat. I investigated characteristics of preferred perch sites for this species and how these preferences varied between habitats and sexes. I then built on previous research to develop a range of management prescriptions for reducing the attractiveness of selectively harvested forest, thereby disarming the ecological trap. Female flycatchers preferred to forage from shorter perch trees than males, and females’ perches were shorter than other available perch trees. Both sexes preferred standing dead perch trees (snags) and these preferences were most obvious in harvested forest where snags are rarer. Because previous research shows that snag density is linked to habitat preference and spruce/fir trees are preferred nest substrate, my results suggest these two habitat components are focal habitat selection cues. I suggest alternative and complementary strategies for eliminating the ecological trap for Olive-sided Flycatchers including: (1) reduced retention and creation of snags, (2) avoiding selective harvest in spruce, fir, and larch stands, (3) avoiding retention of these tree species, and (4) selecting only even-aged canopy height trees for retention so as to reduce perch availability for female flycatchers. Because these strategies also have potential to negatively impact habitat suitability for other forest species or even create new ecological traps, we urge caution in the application of our management recommendations.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Each spring approximately 500,000 sandhill cranes and some endangered whooping cranes use the Central Platte River Valley in Nebraska as a staging habitat during their migration north to breeding and nesting grounds in Canada, Alaska, and the Siberian Arctic. Over the last century changes in the flow of the river have altered the river channels and the distribution of roost sites. USGS researchers studied linkages between water flow, sediment supply, channel morphology, and preferred sites for crane roosting. These results are useful for estimating crane populations and for providing resource managers with techniques to understand crane habitats.
Resumo:
Urban populations of Canada geese (Branta canadensis) cause considerable problems when large numbers congregate in parks, playing fields, and backyards. In most cases, geese are drawn to these sites to feed on the lawns. I tested whether geese have feeding preferences for different grass species. Captive Canada geese preferred Kentucky bluegrass (Poa pratensis) and disliked tall fescue (Festuca arundinaceae) over colonial bentgrass (Agrostis tenuis cv. Highland), perennial ryegrass (Lolium perenne), and red fescue (Festuca rubra). They refused to eat some other ground covers such as pachysandra (Pachysandra terminalis) and English ivy (Hedera helix). These results suggest that goose numbers at problem sites could be reduced by changing the ground cover. I also compared the characteristics of foraging sites used by geese to other foraging sites that geese avoided. Occupied sites were more open so that geese had clearer visibility and greater ease in taking off and landing. This suggests that goose numbers at problem sites also could be reduced by planting tall trees to make it harder for the geese to fly away, and planting bushes and hedges to obstruct a goose's visibility.
Resumo:
Assessing the ecological requirements of species coexisting within a community is an essential requisite for developing sound conservation action. A particularly interesting question is what mechanisms govern the stable coexistence of cryptic species within a community, i.e. species that are almost impossible to distinguish. Resource partitioning theory predicts that cryptic species, like other sympatric taxa, will occupy distinct ecological niches. This prediction is widely inferred from eco-morphological studies. A new cryptic long-eared bat species, Plecotus macrobullaris, has been recently discovered in the complex of two other species present in the European Alps, with even evidence for a few mixed colonies. This discovery poses challenges to bat ecologists concerned with planning conservation measures beyond roost protection. We therefore tested whether foraging habitat segregation occurred among the three cryptic Plecotus bat species in Switzerland by radiotracking 24 breeding female bats (8 of each species). We compared habitat features at locations visited by a bat versus random locations within individual home ranges, applying mixed effects logistic regression. Distinct, species-specific habitat preferences were revealed. P. auritus foraged mostly within traditional orchards in roost vicinity, with a marked preference for habitat heterogeneity. P. austriacus foraged up to 4.7 km from the roost, selecting mostly fruit tree plantations, hedges and tree lines. P. macrobullaris preferred patchy deciduous and mixed forests with high vertical heterogeneity in a grassland dominated-matrix. These species-specific habitat preferences should inform future conservation programmes. They highlight the possible need of distinct conservation measures for species that look very much alike.