1000 resultados para Power Substations
Resumo:
With the development and deployment of IEC 61850 based smart substations, cybersecurity vulnerabilities of supervisory control and data acquisition (SCADA) systems are increasingly emerging. In response to the emergence of cybersecurity vulnerabilities in smart substations, a test-bed is indispensable to enable cybersecurity experimentation. In this paper, a comprehensive and realistic cyber-physical test-bed has been built to investigate potential cybersecurity vulnerabilities and the impact of cyber-attacks on IEC 61850 based smart substations. This test-bed is close to a real production type environment, and has the ability to carry out end-to-end testing of cyber-attacks and physical consequences. A fuzz testing approach is proposed for detecting IEC 61850 based intelligent electronic devices (IEDs) and validated in the proposed test-bed.
Resumo:
The reactive power management in distribution network with large penetration of distributed energy resources is an important task in future power systems. The control of reactive power allows the inclusion of more distributed recourses and a more efficient operation of distributed network. Currently, the reactive power is only controlled in large power plants and in high and very high voltage substations. In this paper, several reactive power control strategies considering a smart grids paradigm are proposed. In this context, the management of distributed energy resources and of the distribution network by an aggregator, namely Virtual Power Player (VPP), is proposed and implemented in a MAS simulation tool. The proposed methods have been computationally implemented and tested using a 32-bus distribution network with intensive use of distributed resources, mainly the distributed generation based on renewable resources. Results concerning the evaluation of the reactive power management algorithms are also presented and compared.
Resumo:
Three multivariate statistical tools (principal component analysis, factor analysis, analysis discriminant) have been tested to characterize and model the sags registered in distribution substations. Those models use several features to represent the magnitude, duration and unbalanced grade of sags. They have been obtained from voltage and current waveforms. The techniques are tested and compared using 69 registers of sags. The advantages and drawbacks of each technique are listed
Resumo:
The work presented in this paper belongs to the power quality knowledge area and deals with the voltage sags in power transmission and distribution systems. Propagating throughout the power network, voltage sags can cause plenty of problems for domestic and industrial loads that can financially cost a lot. To impose penalties to responsible party and to improve monitoring and mitigation strategies, sags must be located in the power network. With such a worthwhile objective, this paper comes up with a new method for associating a sag waveform with its origin in transmission and distribution networks. It solves this problem through developing hybrid methods which hire multiway principal component analysis (MPCA) as a dimension reduction tool. MPCA reexpresses sag waveforms in a new subspace just in a few scores. We train some well-known classifiers with these scores and exploit them for classification of future sags. The capabilities of the proposed method for dimension reduction and classification are examined using the real data gathered from three substations in Catalonia, Spain. The obtained classification rates certify the goodness and powerfulness of the developed hybrid methods as brand-new tools for sag classification
Resumo:
This paper introduces a method for the supervision and control of devices in electric substations using fuzzy logic and artificial neural networks. An automatic knowledge acquisition process is included which allows the on-line processing of operator actions and the extraction of control rules to replace gradually the human operator. Some experimental results obtained by the application of the implemented software in a simulated environment with random signal generators are presented.
Resumo:
This paper proposes the application of computational intelligence techniques to assist complex problems concerning lightning in transformers. In order to estimate the currents related to lightning in a transformer, a neural tool is presented. ATP has generated the training vectors. The input variables used in Artificial Neural Networks (ANN) were the wave front time, the wave tail time, the voltage variation rate and the output variable is the maximum current in the secondary of the transformer. These parameters can define the behavior and severity of lightning. Based on these concepts and from the results obtained, it can be verified that the overvoltages at the secondary of transformer are also affected by the discharge waveform in a similar way to the primary side. By using the tool developed, the high voltage process in the distribution transformers can be mapped and estimated with more precision aiding the transformer project process, minimizing empirics and evaluation errors, and contributing to minimize the failure rate of transformers. © 2009 The Berkeley Electronic Press. All rights reserved.
Resumo:
In this paper, a methodology based on Unconstrained Binary Programming (UBP) model and Genetic Algorithms (GAs) is proposed for estimating fault sections in automated distribution substations. The UBP model, established by using the parsimonious set covering theory, looks for the match between the relays' protective alarms informed by the SCADA system and their expected states. The GA is developed to minimize the UBP model and estimate the fault sections in a swift and reliable manner. The proposed methodology is tested by utilizing a real-life automated distribution substation. Control parameters of the GA are tuned to achieve maximum computational efficiency and reduction of processing time. Results show the potential and efficiency of the methodology for estimating fault section in real-time at Distribution Control Centers. ©2009 IEEE.
Resumo:
This work proposes a methodology for optimized allocation of switches for automatic load transfer in distribution systems in order to improve the reliability indexes by restoring such systems which present voltage classes of 23 to 35 kV and radial topology. The automatic switches must be allocated on the system in order to transfer load remotely among the sources at the substations. The problem of switch allocation is formulated as nonlinear constrained mixed integer programming model subject to a set of economical and physical constraints. A dedicated Tabu Search (TS) algorithm is proposed to solve this model. The proposed methodology is tested for a large real-life distribution system. © 2011 IEEE.