975 resultados para Positive Matrix Factorization
Resumo:
Here, we define and consider (linear) TP-directions and TP-paths for a totally nonnegative matrix, in an effort to more deeply understand perturbation of a TN matrix to a TP matrix. We give circumstances in which a TP-direction exists and an example to show that they do not always exist. A strategy to give (nonlinear) TP-paths is given (and applied to this example). A long term goal is to understand the sparsest TP-perturbation for application to completion problems.
Resumo:
On étudie l’application des algorithmes de décomposition matricielles tel que la Factorisation Matricielle Non-négative (FMN), aux représentations fréquentielles de signaux audio musicaux. Ces algorithmes, dirigés par une fonction d’erreur de reconstruction, apprennent un ensemble de fonctions de base et un ensemble de coef- ficients correspondants qui approximent le signal d’entrée. On compare l’utilisation de trois fonctions d’erreur de reconstruction quand la FMN est appliquée à des gammes monophoniques et harmonisées: moindre carré, divergence Kullback-Leibler, et une mesure de divergence dépendente de la phase, introduite récemment. Des nouvelles méthodes pour interpréter les décompositions résultantes sont présentées et sont comparées aux méthodes utilisées précédemment qui nécessitent des connaissances du domaine acoustique. Finalement, on analyse la capacité de généralisation des fonctions de bases apprises par rapport à trois paramètres musicaux: l’amplitude, la durée et le type d’instrument. Pour ce faire, on introduit deux algorithmes d’étiquetage des fonctions de bases qui performent mieux que l’approche précédente dans la majorité de nos tests, la tâche d’instrument avec audio monophonique étant la seule exception importante.
Resumo:
We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.
Resumo:
This paper introduces a new unsupervised hyperspectral unmixing method conceived to linear but highly mixed hyperspectral data sets, in which the simplex of minimum volume, usually estimated by the purely geometrically based algorithms, is far way from the true simplex associated with the endmembers. The proposed method, an extension of our previous studies, resorts to the statistical framework. The abundance fraction prior is a mixture of Dirichlet densities, thus automatically enforcing the constraints on the abundance fractions imposed by the acquisition process, namely, nonnegativity and sum-to-one. A cyclic minimization algorithm is developed where the following are observed: 1) The number of Dirichlet modes is inferred based on the minimum description length principle; 2) a generalized expectation maximization algorithm is derived to infer the model parameters; and 3) a sequence of augmented Lagrangian-based optimizations is used to compute the signatures of the endmembers. Experiments on simulated and real data are presented to show the effectiveness of the proposed algorithm in unmixing problems beyond the reach of the geometrically based state-of-the-art competitors.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
During must fermentation by Saccharomyces cerevisiae strains thousands of volatile aroma compounds are formed. The objective of the present work was to adapt computational approaches to analyze pheno-metabolomic diversity of a S. cerevisiae strain collection with different origins. Phenotypic and genetic characterization together with individual must fermentations were performed, and metabolites relevant to aromatic profiles were determined. Experimental results were projected onto a common coordinates system, revealing 17 statistical-relevant multi-dimensional modules, combining sets of most-correlated features of noteworthy biological importance. The present method allowed, as a breakthrough, to combine genetic, phenotypic and metabolomic data, which has not been possible so far due to difficulties in comparing different types of data. Therefore, the proposed computational approach revealed as successful to shed light into the holistic characterization of S. cerevisiae pheno-metabolome in must fermentative conditions. This will allow the identification of combined relevant features with application in selection of good winemaking strains.
Resumo:
La méthode de factorisation est appliquée sur les données initiales d'un problème de mécanique quantique déja résolu. Les solutions (états propres et fonctions propres) sont presque tous retrouvés.
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
Biological systems exhibit rich and complex behavior through the orchestrated interplay of a large array of components. It is hypothesized that separable subsystems with some degree of functional autonomy exist; deciphering their independent behavior and functionality would greatly facilitate understanding the system as a whole. Discovering and analyzing such subsystems are hence pivotal problems in the quest to gain a quantitative understanding of complex biological systems. In this work, using approaches from machine learning, physics and graph theory, methods for the identification and analysis of such subsystems were developed. A novel methodology, based on a recent machine learning algorithm known as non-negative matrix factorization (NMF), was developed to discover such subsystems in a set of large-scale gene expression data. This set of subsystems was then used to predict functional relationships between genes, and this approach was shown to score significantly higher than conventional methods when benchmarking them against existing databases. Moreover, a mathematical treatment was developed to treat simple network subsystems based only on their topology (independent of particular parameter values). Application to a problem of experimental interest demonstrated the need for extentions to the conventional model to fully explain the experimental data. Finally, the notion of a subsystem was evaluated from a topological perspective. A number of different protein networks were examined to analyze their topological properties with respect to separability, seeking to find separable subsystems. These networks were shown to exhibit separability in a nonintuitive fashion, while the separable subsystems were of strong biological significance. It was demonstrated that the separability property found was not due to incomplete or biased data, but is likely to reflect biological structure.
Resumo:
This paper is concerned with tensor clustering with the assistance of dimensionality reduction approaches. A class of formulation for tensor clustering is introduced based on tensor Tucker decomposition models. In this formulation, an extra tensor mode is formed by a collection of tensors of the same dimensions and then used to assist a Tucker decomposition in order to achieve data dimensionality reduction. We design two types of clustering models for the tensors: PCA Tensor Clustering model and Non-negative Tensor Clustering model, by utilizing different regularizations. The tensor clustering can thus be solved by the optimization method based on the alternative coordinate scheme. Interestingly, our experiments show that the proposed models yield comparable or even better performance compared to most recent clustering algorithms based on matrix factorization.
Resumo:
We establish sufficient conditions for a matrix to be almost totally positive, thus extending a result of Craven and Csordas who proved that the corresponding conditions guarantee that a matrix is strictly totally positive. Then we apply our main result in order to obtain a new criteria for a real algebraic polynomial to be a Hurwitz one. The properties of the corresponding extremal Hurwitz polynomials are discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Il crescente utilizzo di sistemi di analisi high-throughput per lo studio dello stato fisiologico e metabolico del corpo, ha evidenziato che una corretta alimentazione e una buona forma fisica siano fattori chiave per la salute. L'aumento dell'età media della popolazione evidenzia l'importanza delle strategie di contrasto delle patologie legate all'invecchiamento. Una dieta sana è il primo mezzo di prevenzione per molte patologie, pertanto capire come il cibo influisce sul corpo umano è di fondamentale importanza. In questo lavoro di tesi abbiamo affrontato la caratterizzazione dei sistemi di imaging radiografico Dual-energy X-ray Absorptiometry (DXA). Dopo aver stabilito una metodologia adatta per l'elaborazione di dati DXA su un gruppo di soggetti sani non obesi, la PCA ha evidenziato alcune proprietà emergenti dall'interpretazione delle componenti principali in termini delle variabili di composizione corporea restituite dalla DXA. Le prime componenti sono associabili ad indici macroscopici di descrizione corporea (come BMI e WHR). Queste componenti sono sorprendentemente stabili al variare dello status dei soggetti in età, sesso e nazionalità. Dati di analisi metabolica, ottenuti tramite Magnetic Resonance Spectroscopy (MRS) su campioni di urina, sono disponibili per circa mille anziani (provenienti da cinque paesi europei) di età compresa tra i 65 ed i 79 anni, non affetti da patologie gravi. I dati di composizione corporea sono altresì presenti per questi soggetti. L'algoritmo di Non-negative Matrix Factorization (NMF) è stato utilizzato per esprimere gli spettri MRS come combinazione di fattori di base interpretabili come singoli metaboliti. I fattori trovati sono stabili, quindi spettri metabolici di soggetti sono composti dallo stesso pattern di metaboliti indipendentemente dalla nazionalità. Attraverso un'analisi a singolo cieco sono stati trovati alti valori di correlazione tra le variabili di composizione corporea e lo stato metabolico dei soggetti. Ciò suggerisce la possibilità di derivare la composizione corporea dei soggetti a partire dal loro stato metabolico.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-04
Resumo:
In recent years, the boundaries between e-commerce and social networking have become increasingly blurred. Many e-commerce websites support the mechanism of social login where users can sign on the websites using their social network identities such as their Facebook or Twitter accounts. Users can also post their newly purchased products on microblogs with links to the e-commerce product web pages. In this paper, we propose a novel solution for cross-site cold-start product recommendation, which aims to recommend products from e-commerce websites to users at social networking sites in 'cold-start' situations, a problem which has rarely been explored before. A major challenge is how to leverage knowledge extracted from social networking sites for cross-site cold-start product recommendation. We propose to use the linked users across social networking sites and e-commerce websites (users who have social networking accounts and have made purchases on e-commerce websites) as a bridge to map users' social networking features to another feature representation for product recommendation. In specific, we propose learning both users' and products' feature representations (called user embeddings and product embeddings, respectively) from data collected from e-commerce websites using recurrent neural networks and then apply a modified gradient boosting trees method to transform users' social networking features into user embeddings. We then develop a feature-based matrix factorization approach which can leverage the learnt user embeddings for cold-start product recommendation. Experimental results on a large dataset constructed from the largest Chinese microblogging service Sina Weibo and the largest Chinese B2C e-commerce website JingDong have shown the effectiveness of our proposed framework.