442 resultados para Pilus Biogenesis
Resumo:
A likely pathway to the sex pheromones of Bactrocera oleae (olive fruit-fly) is presented, based mainly on feeding experiments with deuterium labelled precursors.
Resumo:
Caveolins have been identified as key components of caveolae, specialized cholesterol-enriched raft domains visible as small flask-shaped invaginations of the plasma membrane. In polarized MDCK cells caveolin-1 and -2 are found together on basolateral caveolae whereas the apical membrane, where only caveolin-1 is present, lacks caveolae. Expression of a caveolin mutant prevented the formation of the large caveolin-1/-2 hetero-oligomeric complexes, and led to intracellular retention of caveolin-2 and disappearance of caveolae from the basolateral membrane. Correspondingly, in MDCK cells over-expressing caveolin-2 the basolateral membrane exhibited an increased number of caveolae. These results indicate the involvement of caveolin-2 in caveolar biogenesis. (C) 2003 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
Proteins of the annexin family are believed to be involved in membrane-related processes, but their precise functions remain unclear. Here, we have made use of several experimental approaches, including pathological conditions, RNA interference and in vitro transport assays, to study the function of annexin II in the endocytic pathway. We find that annexin II is required for the biogenesis of multivesicular transport intermediates destined for late endosomes, by regulating budding from early endosomes-but not the membrane invagination process. Hence, the protein appears to be a necessary component of the machinery controlling endosomal membrane dynamics and multivesicular endosome biogenesis. We also find that annexin II interacts with cholesterol and that its subcellular distribution is modulated by the subcellular distribution of cholesterol, including in cells from patients with the cholesterol-storage disorder Niemann-Pick C. We conclude that annexin II forms cholesterol-containing platforms on early endosomal membranes, and that these platforms regulate the onset of the degradation pathway in animal cells.
Resumo:
The cytosolic chaperonin CCT is a heterooligomeric complex of about 900 kDa that mediates the folding of cytoskeletal proteins. We observed by indirect immunofluorescence that the Tetrahymena TpCCTalpha, TpCCTdelta, TpCCTepsilon, and TpCCTeta-subunits colocalize with tubulin in cilia, basal bodies, oral apparatus, and contractile vacuole pores. TpCCT-subunits localization was affected during reciliation. These findings combined with atomic force microscopy measurements in reciliating cells indicate that these proteins play a role during cilia biogenesis related to microtubule nucleation, tubulin transport, and/or axoneme assembly. The TpCCT-subunits were also found to be associated with cortex and cytoplasmic microtubules suggesting that they can act as microtubule-associated proteins. The TpCCTdelta being the only subunit found associated with the macronuclear envelope indicates that it has functions outside of the 900 kDa complex. Tetrahymena cytoplasm contains granular/globular-structures of TpCCT-subunits in close association with microtubule arrays. Studies of reciliation and with cycloheximide suggest that these structures may be sites of translation and folding. Combined biochemical techniques revealed that reciliation affects the oligomeric state of TpCCT-subunits being tubulin preferentially associated with smaller CCT oligomeric species in early stages of reciliation. Collectively, these findings indicate that the oligomeric state of CCT-subunits reflects the translation capacity of the cell and microtubules integrity.
Resumo:
We report here the cloning and the characterization of the T. pyriformis CCT eta gene (TpCCT eta) and also a partial sequence of the corresponding T. thermophila gene (TtCCT eta). The TpCCt eta gene encodes a protein sharing a 60.3% identity with the mouse CCT eta. We have studied the expression of these genes in Tetrahymena exponentially growing cells, cells regenerating their cilia for different periods and during different stages of the cell sexual reproduction. These genes have similar patterns of expression to those of the previously identified TpCCt gamma gene. Indeed, the Tetrahymena CCT eta and CCT gamma genes are up-regulated at 60-120 min of cilia recovery, and in conjugation when vegetative growth was resumed and cell division took place. Our results seem to indicate that both CCT subunits play an important role in the biogenesis of the newly synthesized cilia of Tetrahymena and during its cell division.
Resumo:
Dissertação apresentada para obtenção do grau de Doutor em Biologia Celular pelo Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa
Resumo:
Background. Streptococcus gallolyticus is a causative agent of infective endocarditis associated with colon cancer. Genome sequence of strain UCN34 revealed the existence of 3 pilus loci (pil1, pil2, and pil3). Pili are long filamentous structures playing a key role as adhesive organelles in many pathogens. The pil1 locus encodes 2 LPXTG proteins (Gallo2178 and Gallo2179) and 1 sortase C (Gallo2177). Gallo2179 displaying a functional collagen-binding domain was referred to as the adhesin, whereas Gallo2178 was designated as the major pilin. Methods. S. gallolyticus UCN34, Pil1(+) and Pil1(-), expressing various levels of pil1, and recombinant Lactococcus lactis strains, constitutively expressing pil1, were studied. Polyclonal antibodies raised against the putative pilin subunits Gallo2178 and Gallo2179 were used in immunoblotting and immunogold electron microscopy. The role of pil1 was tested in a rat model of endocarditis. Results. We showed that the pil1 locus (gallo2179-78-77) forms an operon differentially expressed among S. gallolyticus strains. Short pilus appendages were identified both on the surface of S. gallolyticus UCN34 and recombinant L. lactis-expressing pil1. We demonstrated that Pil1 pilus is involved in binding to collagen, biofilm formation, and virulence in experimental endocarditis. Conclusions. This study identifies Pil1 as the first virulence factor characterized in S. gallolyticus.
Resumo:
One key step in gene expression is the biogenesis of mRNA ribonucleoparticle complexes (mRNPs). Formation of the mRNP requires the participation of a number of conserved factors such as the THO complex. THO interacts physically and functionally with the Sub2/UAP56 RNA-dependent ATPase, and the Yra1/REF1/ALY RNA-binding protein linking transcription, mRNA export and genome integrity. Given the link between genome instability and cancer, we have performed a comparative analysis of the expression patterns of THOC1, a THO complex subunit, and ALY in tumor samples.
Resumo:
Résumé : Le centrosome contient une paire de centrioles entourée par du matériel péricentriolaire (PCM) et cet ensemble constitue le centre organisateur des microtubules de la majorité des cellules animales. Tout comme l'ADN, 1'unique centrosome présent au début du cycle cellulaire est dupliqué une et une seule fois pour former deux centrosomes qui vont orchestrer la mise en place du fuseau mitotique. La duplication du centrosome doit être soumise à une régulation précise car la présence d'un seul ou de plus de deux centrosomes peut entraîner la formation d'un fuseau mitotique aberrant, la mauvaise ségrégation des chromosomes et l'aneuploïdie. Bien que la duplication des centrioles soit un phénomène clé pour la duplication du centrosome lui-même, les mécanismes impliqués dans la formation des centrioles sont peu connus et constituent une importante question de biologie cellulaire. Dans cette thèse, nous nous sommes concentrés sur l'analyse de HsSAS-6. Nous avons trouvé que cette protéine est nécessaire pour la formation d'un centriole et qu'elle est localisée spécifiquement à la base des nouveaux centrioles formés. Les niveaux de HsSAS-6 oscillent pendant le cycle cellulaire : la protéine est absente en G1, commence à s'accumuler au niveau du centriole et dans le cytoplasme dès le début de la phase S de synthèse et disparaît abruptement pendant l'anaphase, où probablement APC/CCdlh1 la dirige vers une dégradation par le protéasome 26S. Il est important de noter que la surexpression de HsSAS-6 entraîne la formation de multiples centrioles au lieu d'un seul, ce qui indique que les niveaux de HsSAS-6 déterminent le nombre de centrioles formés. En plus de HsSAS-6, nous avons aussi étudié la lignée mutante sas-2 de C. elegans qui quelques fois assemble un fuseau multi-polaire dans l'embryon à une cellule. Nous avons montré que ce phénotype est la conséquence de la présence de multiples centrioles dans les cellules du sperme. Enfin, nous avons aussi préparé une palette de vecteurs compatibles avec le système Gateway pour permettre la génération rapide de lignées cellulaires humaines exprimant des protéines de manière inductible. De plus, nous avons commencé à développer une méthode pour évaluer la duplication des centrioles par le biais d'une plateforme de criblage d'une librairie de siRNA humains. Dans l'ensemble, notre travail a pu apporter une nouvelle compréhension du processus de duplication des centrioles et a contribué au développement de nouveaux outils de recherche de ce processus. Summary : Centrosomes contain a pair of centrioles surrounded by pericentriolar material (PCM) and serve as the main microtubule organizing centers (MTOCs) of most animal cells. Just like the DNA, the single centrosome present early in the cell cycle duplicates once and only once to give rise to two centrosomes which will then direct assembly of a bipolar spindle. Centrosome duplication must be precisely regulated because the presence of either one or more than two centrosomes can lead to the assembly of an aberrant spindle, chromosome missegregation and aneuploidy. Although duplication of centrioles is key for that of the entire centrosome, the mechanisms underlying centriole formation are poorly understood and represent an important question in cell biology. In this thesis, we focused on the analysis of HsSAS-6. We found that this protein is required for centriole formation and that it is localized specifically at the base of newly forming centrioles. The levels of HsSAS-6 oscillate across the cell cycle. The protein is absent during G1, starts to accumulate at the centriole and in the cytoplasm at the onset of S phase and disappears abruptly during anaphase when it is targeted for 26S proteasome dependent degradation probably by the APC/CCdh1. Importantly, overexpression of HsSAS-6 leads to the formation of multiple centrioles instead of just one, indicating that levels of HsSAS-6 determine the number of centrioles at each cell cycle. Besides HsSAS-6 that is the main focus of this thesis, we have also investigated the C. elegans mutant strain sas-2, which sometimes assembles a multipolar spindle in the one cell stage embryo. We have shown that this phenotype derives from the presence of multiple centrioles in sperm cells. Moreover, we prepared a set of Gateway compatible vectors for fast generation of human cell lines with inducible protein expression. Finally, we started to develop an assay for centriole duplication that can be used in a high throughput setting for screening of human siRNA libraries. Taken together, our work brought novel insights into the process of centriole duplication and lead to the development of new tools for further investigation of this process.
Resumo:
Vacuole membrane protein 1 (Vmp1) is membrane protein of unknown molecular function that has been associated with pancreatitis and cancer. The social amoeba Dictyostelium discoideum has a vmp1-related gene that we identified previously in a functional genomic study. Loss-of-function of this gene leads to a severe phenotype that compromises Dictyostelium growth and development. The expression of mammalian Vmp1 in a vmp1 Dictyostelium mutant complemented the phenotype, suggesting a functional conservation of the protein among evolutionarily distant species and highlights Dictyostelium as a valid experimental system to address the function of this gene. Dictyostelium Vmp1 is an endoplasmic reticulum protein necessary for the integrity of this organelle. Cells deficient in Vmp1 display pleiotropic defects in the secretory pathway and organelle biogenesis. The contractile vacuole, which is necessary to survive under hypoosmotic conditions, is not functional in the mutant. The structure of the Golgi apparatus, the function of the endocytic pathway and conventional protein secretion are also affected in these cells. Transmission electron microscopy of vmp1 cells showed the accumulation of autophagic features that suggests a role of Vmp1 in macroautophagy. In addition to these defects observed at the vegetative stage, the onset of multicellular development and early developmental gene expression are also compromised.
Resumo:
Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.
Resumo:
Ubiquitination, deubiquitination, and the formation of specific ubiquitin chain topologies have been implicated in various cellular processes. Little is known, however, about the role of ubiquitin in the development of cellular organelles. Here, we identify and characterize the deubiquitinating enzyme AMSH3 from Arabidopsis thaliana. AMSH3 hydrolyzes K48- and K63-linked ubiquitin chains in vitro and accumulates both ubiquitin chain types in vivo. amsh3 mutants fail to form a central lytic vacuole, accumulate autophagosomes, and mis-sort vacuolar protein cargo to the intercellular space. Furthermore, AMSH3 is required for efficient endocytosis of the styryl dye FM4-64 and the auxin efflux facilitator PIN2. We thus present evidence for a role of deubiquitination in intracellular trafficking and vacuole biogenesis.
Resumo:
Jasmonates, potent lipid mediators of defense gene expression in plants, are rapidly synthesized in response to wounding. These lipid mediators also stimulate their own production via a positive feedback circuit, which depends on both JA synthesis and JA signaling. To date, molecular components regulating the activation of jasmonate biogenesis and its feedback loop have been poorly characterized. We employed a genetic screen capable of detecting the misregulated activity of 13-lipoxygenase, which operates at the entry point of the jasmonate biosynthesis pathway. Leaf extracts from the Arabidopsis fou2 (fatty acid oxygenation upregulated 2) mutant displayed an increased capacity to catalyze the synthesis of lipoxygenase (LOX) metabolites. Quantitative oxylipin analysis identified less than twofold increased jasmonate levels in healthy fou2 leaves compared to wild-type; however, wounded fou2 leaves strongly increased jasmonate biogenesis compared to wounded wild-type. Furthermore, the plants displayed enhanced resistance to the fungus Botrytis cinerea. Higher than wild-type LOX activity and enhanced resistance in the fou2 mutant depend fully on a functional jasmonate response pathway. The fou2 mutant carries a missense mutation in the putative voltage sensor of the Two Pore Channel 1 gene (TPC1), which encodes a Ca(2+)-permeant non-selective cation channel. Patch-clamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. The results indicate that cation fluxes exert strong control over the positive feedback loop whereby JA stimulates its own synthesis.
Resumo:
Control of lipid droplet (LD) nucleation and copy number are critical, yet poorly understood, processes. We use model peptides that shift from the endoplasmic reticulum (ER) to LDs in response to fatty acids to characterize the initial steps of LD formation occurring in lipid-starved cells. Initially, arriving lipids are rapidly packed in LDs that are resistant to starvation (pre-LDs). Pre-LDs are restricted ER microdomains with a stable core of neutral lipids. Subsequently, a first round of"emerging" LDs is nucleated, providing additional lipid storage capacity. Finally, in proportion to lipid concentration, new rounds of LDs progressively assemble. Confocal microscopy and electron tomography suggest that emerging LDs are nucleated in a limited number of ER microdomains after a synchronized stepwise process of protein gathering, lipid packaging, and recognition by Plin3 and Plin2. A comparative analysis demonstrates that the acyl-CoA synthetase 3 is recruited early to the assembly sites, where it is required for efficient LD nucleation and lipid storage.