229 resultados para Piers.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

"March 1996."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Includes index.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Concrete filled steel tubular (CFST) columns are increasingly used in bridge piers and high-rise buildings due to their excellent axial load bearing capacity. These columns may experience severe damage or failure due to transverse impact of vehicle collisions. In this study, numerical investigation is carried out to evaluate the effect of carbon fibre reinforced polymer (CFRP) strengthening CFST columns under vehicular impact. The CFRP composites damage mechanisms are simulated to account four different failure criteria. The cohesive elements are introduced as interface element to properly simulate the adhesively bonded regime. Simplified vehicle model is also developed to represent real vehicle behaviour. The FE analysis results show that externally bonded CFRP composites improve the impact resistance capacity compared to bare CFST column.