967 resultados para Physically-based animation
Resumo:
Leaf wetness duration (LWD) models based on empirical approaches offer practical advantages over physically based models in agricultural applications, but their spatial portability is questionable because they may be biased to the climatic conditions under which they were developed. In our study, spatial portability of three LWD models with empirical characteristics - a RH threshold model, a decision tree model with wind speed correction, and a fuzzy logic model - was evaluated using weather data collected in Brazil, Canada, Costa Rica, Italy and the USA. The fuzzy logic model was more accurate than the other models in estimating LWD measured by painted leaf wetness sensors. The fraction of correct estimates for the fuzzy logic model was greater (0.87) than for the other models (0.85-0.86) across 28 sites where painted sensors were installed, and the degree of agreement k statistic between the model and painted sensors was greater for the fuzzy logic model (0.71) than that for the other models (0.64-0.66). Values of the k statistic for the fuzzy logic model were also less variable across sites than those of the other models. When model estimates were compared with measurements from unpainted leaf wetness sensors, the fuzzy logic model had less mean absolute error (2.5 h day(-1)) than other models (2.6-2.7 h day(-1)) after the model was calibrated for the unpainted sensors. The results suggest that the fuzzy logic model has greater spatial portability than the other models evaluated and merits further validation in comparison with physical models under a wider range of climate conditions. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Realistic rendering animation is known to be an expensive processing task when physically-based global illumination methods are used in order to improve illumination details. This paper presents an acceleration technique to compute animations in radiosity environments. The technique is based on an interpolated approach that exploits temporal coherence in radiosity. A fast global Monte Carlo pre-processing step is introduced to the whole computation of the animated sequence to select important frames. These are fully computed and used as a base for the interpolation of all the sequence. The approach is completely view-independent. Once the illumination is computed, it can be visualized by any animated camera. Results present significant high speed-ups showing that the technique could be an interesting alternative to deterministic methods for computing non-interactive radiosity animations for moderately complex scenarios
Resumo:
Image analysis and graphics synthesis can be achieved with learning techniques using directly image examples without physically-based, 3D models. In our technique: -- the mapping from novel images to a vector of "pose" and "expression" parameters can be learned from a small set of example images using a function approximation technique that we call an analysis network; -- the inverse mapping from input "pose" and "expression" parameters to output images can be synthesized from a small set of example images and used to produce new images using a similar synthesis network. The techniques described here have several applications in computer graphics, special effects, interactive multimedia and very low bandwidth teleconferencing.
Resumo:
Realistic rendering animation is known to be an expensive processing task when physically-based global illumination methods are used in order to improve illumination details. This paper presents an acceleration technique to compute animations in radiosity environments. The technique is based on an interpolated approach that exploits temporal coherence in radiosity. A fast global Monte Carlo pre-processing step is introduced to the whole computation of the animated sequence to select important frames. These are fully computed and used as a base for the interpolation of all the sequence. The approach is completely view-independent. Once the illumination is computed, it can be visualized by any animated camera. Results present significant high speed-ups showing that the technique could be an interesting alternative to deterministic methods for computing non-interactive radiosity animations for moderately complex scenarios
Resumo:
Remote sensing is the only practicable means to observe snow at large scales. Measurements from passive microwave instruments have been used to derive snow climatology since the late 1970’s, but the algorithms used were limited by the computational power of the era. Simplifications such as the assumption of constant snow properties enabled snow mass to be retrieved from the microwave measurements, but large errors arise from those assumptions, which are still used today. A better approach is to perform retrievals within a data assimilation framework, where a physically-based model of the snow properties can be used to produce the best estimate of the snow cover, in conjunction with multi-sensor observations such as the grain size, surface temperature, and microwave radiation. We have developed an existing snow model, SNOBAL, to incorporate mass and energy transfer of the soil, and to simulate the growth of the snow grains. An evaluation of this model is presented and techniques for the development of new retrieval systems are discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To continuously improve the performance of metal-oxide-semiconductor field-effect-transistors (MOSFETs), innovative device architectures, gate stack engineering and mobility enhancement techniques are under investigation. In this framework, new physics-based models for Technology Computer-Aided-Design (TCAD) simulation tools are needed to accurately predict the performance of upcoming nanoscale devices and to provide guidelines for their optimization. In this thesis, advanced physically-based mobility models for ultrathin body (UTB) devices with either planar or vertical architectures such as single-gate silicon-on-insulator (SOI) field-effect transistors (FETs), double-gate FETs, FinFETs and silicon nanowire FETs, integrating strain technology and high-κ gate stacks are presented. The effective mobility of the two-dimensional electron/hole gas in a UTB FETs channel is calculated taking into account its tensorial nature and the quantization effects. All the scattering events relevant for thin silicon films and for high-κ dielectrics and metal gates have been addressed and modeled for UTB FETs on differently oriented substrates. The effects of mechanical stress on (100) and (110) silicon band structures have been modeled for a generic stress configuration. Performance will also derive from heterogeneity, coming from the increasing diversity of functions integrated on complementary metal-oxide-semiconductor (CMOS) platforms. For example, new architectural concepts are of interest not only to extend the FET scaling process, but also to develop innovative sensor applications. Benefiting from properties like large surface-to-volume ratio and extreme sensitivity to surface modifications, silicon-nanowire-based sensors are gaining special attention in research. In this thesis, a comprehensive analysis of the physical effects playing a role in the detection of gas molecules is carried out by TCAD simulations combined with interface characterization techniques. The complex interaction of charge transport in silicon nanowires of different dimensions with interface trap states and remote charges is addressed to correctly reproduce experimental results of recently fabricated gas nanosensors.
Resumo:
Throughout the alpine domain, shallow landslides represent a serious geologic hazard, often causing severe damages to infrastructures, private properties, natural resources and in the most catastrophic events, threatening human lives. Landslides are a major factor of landscape evolution in mountainous and hilly regions and represent a critical issue for mountainous land management, since they cause loss of pastoral lands. In several alpine contexts, shallow landsliding distribution is strictly connected to the presence and condition of vegetation on the slopes. With the aid of high-resolution satellite images, it's possible to divide automatically the mountainous territory in land cover classes, which contribute with different magnitude to the stability of the slopes. The aim of this research is to combine EO (Earth Observation) land cover maps with ground-based measurements of the land cover properties. In order to achieve this goal, a new procedure has been developed to automatically detect grass mantle degradation patterns from satellite images. Moreover, innovative surveying techniques and instruments are tested to measure in situ the shear strength of grass mantle and the geomechanical and geotechnical properties of these alpine soils. Shallow landsliding distribution is assessed with the aid of physically based models, which use the EO-based map to distribute the resistance parameters across the landscape.
Resumo:
In this paper we present XSAMPL3D, a novel language for the high-level representation of actions performed on objects by (virtual) humans. XSAMPL3D was designed to serve as action representation language in an imitation-based approach to character animation: First, a human demonstrates a sequence of object manipulations in an immersive Virtual Reality (VR) environment. From this demonstration, an XSAMPL3D description is automatically derived that represents the actions in terms of high-level action types and involved objects. The XSAMPL3D action description can then be used for the synthesis of animations where virtual humans of different body sizes and proportions reproduce the demonstrated action. Actions are encoded in a compact and human-readable XML-format. Thus, XSAMPL3D describtions are also amenable to manual authoring, e.g. for rapid prototyping of animations when no immersive VR environment is at the animator's disposal. However, when XSAMPL3D descriptions are derived from VR interactions, they can accomodate many details of the demonstrated action, such as motion trajectiories,hand shapes and other hand-object relations during grasping. Such detail would be hard to specify with manual motion authoring techniques only. Through the inclusion of language features that allow the representation of all relevant aspects of demonstrated object manipulations, XSAMPL3D is a suitable action representation language for the imitation-based approach to character animation.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Various methods are currently used in order to predict shallow landslides within the catchment scale. Among them, physically based models present advantages associated with the physical description of processes by means of mathematical equations. The main objective of this research is the prediction of shallow landslides using TRIGRS model, in a pilot catchment located at Serra do Mar mountain range, Sao Paulo State, southeastern Brazil. Susceptibility scenarios have been simulated taking into account different mechanical and hydrological values. These scenarios were analysed based on a landslide scars map from the January 1985 event, upon which two indexes were applied: Scars Concentration (SC - ratio between the number of cells with scars, in each class, and the total number of cells with scars within the catchment) and Landslide Potential (LP - ratio between the number of cells with scars, in each class, and the total number of cells in that same class). The results showed a significant agreement between the simulated scenarios and the scar's map. In unstable areas (SF <= 1), the SC values exceeded 50% in all scenarios. Based on the results, the use of this model should be considered an important tool for shallow landslide prediction, especially in areas where mechanical and hydrological properties of the materials are not well known.
Resumo:
Hydrological models featuring root water uptake usually do not include compensation mechanisms such that reductions in uptake from dry layers are compensated by an increase in uptake from wetter layers. We developed a physically based root water uptake model with an implicit compensation mechanism. Based on an expression for the matric flux potential (M) as a function of the distance to the root, and assuming a depth-independent value of M at the root surface, uptake per layer is shown to be a function of layer bulk M, root surface M, and a weighting factor that depends on root length density and root radius. Actual transpiration can be calculated from the sum of layer uptake rates. The proposed reduction function (PRF) was built into the SWAP model, and predictions were compared to those made with the Feddes reduction function (FRF). Simulation results were tested against data from Canada (continuous spring wheat [(Triticum aestivum L.]) and Germany (spring wheat, winter barley [Hordeum vulgare L.], sugarbeet [Beta vulgaris L.], winter wheat rotation). For the Canadian data, the root mean square error of prediction (RMSEP) for water content in the upper soil layers was very similar for FRF and PRF; for the deeper layers, RMSEP was smaller for PRF. For the German data, RMSEP was lower for PRF in the upper layers and was similar for both models in the deeper layers. In conclusion, but dependent on the properties of the data sets available for testing,the incorporation of the new reduction function into SWAP was successful, providing new capabilities for simulating compensated root water uptake without increasing the number of input parameters or degrading model performance.
Resumo:
Correct modeling of root water uptake partitioning over depth is an important issue in hydrological and crop growth models. Recently a physically based model to describe root water uptake was developed at single root scale and upscaled to the root system scale considering a homogeneous distribution of roots per soil layer. Root water uptake partitioning is calculated over soil layers or compartments as a function of respective soil hydraulic conditions, specifically the soil matric flux potential, root characteristics and a root system efficiency factor to compensate for within-layer root system heterogeneities. The performance of this model was tested in an experiment performed in two-compartment split-pot lysimeters with sorghum plants. The compartments were submitted to different irrigation cycles resulting in contrasting water contents over time. The root system efficiency factor was determined to be about 0.05. Release of water from roots to soil was predicted and observed on several occasions during the experiment; however, model predictions suggested root water release to occur more often and at a higher rate than observed. This may be due to not considering internal root system resistances, thus overestimating the ease with which roots can act as conductors of water. Excluding these erroneous predictions from the dataset, statistical indices show model performance to be of good quality.
Forecasting regional crop production using SOI phases: an example for the Australian peanut industry
Resumo:
Using peanuts as an example, a generic methodology is presented to forward-estimate regional crop production and associated climatic risks based on phases of the Southern Oscillation Index (SOI). Yield fluctuations caused by a highly variable rainfall environment are of concern to peanut processing and marketing bodies. The industry could profitably use forecasts of likely production to adjust their operations strategically. Significant, physically based lag-relationships exist between an index of ocean/atmosphere El Nino/Southern Oscillation phenomenon and future rainfall in Australia and elsewhere. Combining knowledge of SOI phases in November and December with output from a dynamic simulation model allows the derivation of yield probability distributions based on historic rainfall data. This information is available shortly after planting a crop and at least 3-5 months prior to harvest. The study shows that in years when the November-December SOI phase is positive there is an 80% chance of exceeding average district yields. Conversely, in years when the November-December SOI phase is either negative or rapidly falling there is only a 5% chance of exceeding average district yields, but a 95% chance of below average yields. This information allows the industry to adjust strategically for the expected volume of production. The study shows that simulation models can enhance SOI signals contained in rainfall distributions by discriminating between useful and damaging rainfall events. The methodology can be applied to other industries and regions.
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies