992 resultados para Physical characterisation
Resumo:
Damaged, aged or unwanted cells are removed from the body by an active process known as apoptosis. This highly orchestrated programme results in the exposure of 'flags' at the dying cell surface and the release of attractive signals to recruit phagocytes. Together these changes ensure efficient phagocytic removal of dying cells and prevention of inflammatory and autoimmune disorders. Extracellular vesicles (EV) are released from a variety of cells (both viable and apoptotic) and they serve as a novel means of intercellular communication. They range in size: 70-100nm ('exosomes') through 100-1000nm ('microparticles') to large vesicles released from dying cells ('apoptotic bodies'). Release of apoptotic cell-derived extracellular vesicles (acdEV) of less than 1000nm is an important mechanism by which phagocytes are attracted to sites of cell death. Using a variety of approaches we characterize the release, physical characteristics and function of acdEV. Using fluorescence microscopy we demonstrate release of ICAM-3 on acdEV from dying leukocytes and, through the use of resistive pulse technology (qNano, IZON Science), we accurately size and quantitate acdEV release. The function of acdEV is revealed through the use of both horizontal chemotaxis assays (Dunn chambers) and vertical transwell migration assays (Cell-IQ, CM Technologies). These assays reveal potent chemoattractive capacity of acdEV and associated ICAM-3. Additionally we demonstrate an additional novel function of acdEV as anti-inflammatory immune-modulators. These data support an integrated approach to the physical and functional analyses of EV.
Resumo:
The androgynophore column, a distinctive floral feature in passion flowers, is strongly crooked or bent in many Passiflora species pollinated by bats. This is a floral feature that facilitates the adaptation to bat pollination. Crooking or bending of plant organs are generally caused by environmental stimulus (e.g. mechanical barriers) and might involve the differential distribution of auxin. Our aim was to study the role of the perianth organs and the effect of auxin in bending of the androgynophore of the bat-pollinated species Passiflora mucronata. Morpho-anatomical characterisation of the androgynophore, including measurements of curvature angles and cell sizes both at the dorsal (convex) and ventral (concave) sides of the androgynophore, was performed on control flowers, flowers from which perianth organs were partially removed and flowers treated either with auxin (2,4-dichlorophenoxyacetic acid; 2,4-D) or with an inhibitor of auxin polar transport (naphthylphthalamic acid; NPA). Asymmetric growth of the androgynophore column, leading to bending, occurs at a late stage of flower development. Removing the physical constraint exerted by perianth organs or treatment with NPA significantly reduced androgynophore bending. Additionally, the androgynophores of plants treated with 2,4-D were more curved when compared to controls. There was a larger cellular expansion at the dorsal side of the androgynophores of plants treated with 2,4-D and in both sides of the androgynophores of plants treated with NPA. This study suggests that the physical constraint exerted by perianth and auxin redistribution promotes androgynophore bending in P. mucronata and might be related to the evolution of chiropterophily in the genus Passiflora.
Resumo:
The data of nitrogen adsorption on pillared clays (PILC) are converted to comparison plots (t-plots) to derive their pore size distribution (PSD). As in the MP method, the surface area of a group of pores having similar pore sizes is calculated from the slopes of tangent lines at two succeeding points on a comparison plot. By the modified MP method in this work, the tangent line is extrapolated to the adsorption axis on the t-plot, and the difference between intercepts is used to obtain the volume of the group of pores. From the information of surface area and pore volume, the average width of the pore group can be calculated and hence the PSDs of PILCs are obtained by carrying out such calculation procedures from high to low t. With this method, PSDs of several pillared clays are calculated over a wide pore size range, from micropores to mesopores. It is found that the modified MP method could result in the underestimation of the width of ultramicropores due to the enhancement in adsorption energy in these pores. Nevertheless, the method can be very useful in calculating the surface area and pore volume, as well as a mean width of these pores. For super-micropores and mesopores, pore size can also be underestimated, due to deviation of the pore shape from a slit. The principles of the improved MP method, as well as problems associated with it are thoroughly discussed in this paper. In general, this modified method provides practically meaningful results which are consistent with the pore dimension obtained from powder X-ray diffraction measurements, but involves no complicated theoretical treatment or assumptions.
Resumo:
This paper presents the results of the characterisation of templated silica xerogels as precursor material for molecular sieve silica membranes for gas separation. The template agent integrated in the xerogel matrix is a methyl ligand covalently bended to the siloxane network in the form of methyltriethoxysilane (MTES). Several surface and microstructural characterisation techniques such as TGA, FTIR, NMR, and nitrogen adsorption have been employed to obtain information on the reaction mechanisms involved in the sol-gel processing of such molecular sieves. The characterisation results show the effects of processing parameters such as heat treatment temperature, and the concentration of the covalently bonded template on the development of the pore structure. It was found that calcination temperature significantly enhanced the condensation reactions thus resulted in more Si-O-Si groups being formed. This was also confirmed with the data of FTIR characterisation showing enhanced silicon bands at higher heat treatment temperatures. As a result of the promoted densification and shrinkable pore network the micropore volume also reduced with increasing methyl ligand molar ratio. However, the mean pore diameter does not change significantly with calcination temperature. While the contribution of the templates towards controlling pore size is less precise, increasing the methyl ligand molar ratio results in the broadening of the pore size distribution and lower pore volume. Higher template concentration induces the collapse of the xerogel matrix due to capillary stress promoting dense xerogels with low pore volume (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The constrained regularisation procedure was applied to compute the pore size distributions (PSDs, f(x)) for a variety of activated carbons using overall adsorption equation based on the combination of the Kelvin equation and the statistical adsorbed film thickness. The impact of the boundary values of relative nitrogen pressure p/p(0) was analysed on the basis of the corresponding alterations in the PSDs. Changes in microporosity and mesoporosity of activated carbons can be described adequately only when the range of p/p(0) is as wide as possible, as at a high initial p/p(0) value, the f(x) curves can be broadened with shifted maxima especially for micropores and narrow mesopores. Comparative analysis of the PSDs and the adsorption potential, adsorption energy and fractal dimension distributions gives useful information on the complete description of the adsorbent characteristics. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Mass balance calculations were performed to model the effect of solution treatment time on A356 and A357 alloy microstructures. Image analysis and electron probe microanalysis were used to characterise microstructures and confirm model predictions. In as-cast microstructures, up to 8 times more Mg is tied up in the pi-phase than in Mg2Si. The dissolution of pi is accompanied by a corresponding increase in the amount of beta-phase. This causes the rate of pi dissolution to be limited by the rate of beta formation. It is predicted that solution treatments of the order of tens of minutes at 540degreesC produce near-maximum T6 yield strengths, and that Mg contents in excess of 0.52 wt% have no advantage.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. Promising properties have been measured for the following alloys: Cu-0.7wt%Cr-0.3wt%Fe and Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the microstructural characterisation of these alloys and discusses the mechanical and electrical properties of these alloys in terms of their microstructure, particularly the formation of precipitates. These alloys have evinced properties that warrant further investigation. Cost modelling has shown that Cu-0.7wt%Cr-0.3wt%Fe is approximately 25% cheaper to produce than commercial Cu-1%Cr. It has also been shown to be more cost efficient on a yield stress and % IACS per dollar basis. The reason for the cost saving is that the Cu-0.7%Cr-0.3%Fe alloy can be made with low carbon ferro-chrome additions as the source of chromium rather than the more expensive Cu-Cr master-alloy. For applications in which cost is one of the primary materials selection criteria, it is envisaged that there would be numerous applications in both cast and wrought form, where the Cu-0.7%Cr-0.3%Fe alloy would be more suitable than Cu-1%Cr. (C) 2001 Kluwer Academic Publishers.
Resumo:
Aims: To characterise chronic lateral epicondylalgia using the McGill Pain Questionnaire, Visual Analog Scales for pain and function, and Quantitative Sensory Tests; and to examine the relationship between these tests in a population with chronic lateral epicondylalgia. Method: Fifty-six patients (29 female, 27 male) diagnosed with unilateral lateral epicondylalgia of 18.7 months (mean) duration (range 1-300), with a mean age of 50.7 years (range 27-73) participated in this study. Each participant underwent assessment with the McGill Pain Questionnaire (MPQ), Visual Analog Scales (VAS) for pain and function. and Quantitative Sensory Tests (QST) including thermal and pressure pain thresholds, pain free grip strength, and neuromeningeal tissue testing via the upper limb tension test 2b (ULTT 2b). Results: Moderate correlation (r = .338-.514, p = .000-.013) was found between all indices of the MPQ and VAS for pain experienced in the previous 24 hours and week. Thermal pain threshold was found to be significantly higher in males. A significant poor to moderate correlation was found between the Pain Rating Index (PRI) in the sensory category of the MPQ and ULTT2b scores (r = .353, p = .038). There was no other significant correlation between MPQ and QST data. Pain free grip strength was poorly yet significantly correlated with duration of pathology (r = 318, p = .038). Conclusion: The findings of this study are in agreement with others (Melzack and Katz, 1994) regarding the multidimensional nature of pain, in a condition conventionally conceived as a musculoskeletal pain state. The findings also suggest that utilisation of only one pain measurement tool is unlikely to provide a thorough clinical picture of pain experienced with chronic lateral epicondylalgia.
Resumo:
Different formulations of biodegradable starch-polyester blend nanocomposite materials have been film blown on a pilot scale film blowing tower. The physical properties of different films have been examined by thermal and mechanical analysis and X-ray diffraction. The results show that the addition of an organoclay (from 0 to 5 wt%) significantly improves both the processing and tensile properties over the original starch blends. Wide angle X-ray diffraction (WAXD) results indicate that the best results were obtained for 30wt% starch blends, and the level of delamination depends on the ratio of starch to polyester and amount of organoclay added. The crystallisation temperature of the nanocomposite blends is significantly lower than the base blend. This is probably due to the platelets inhibiting order, and hence crystallisation, of the starch and polyester. The mechanical and thermal properties of the blends are also sensitive to the way the clay particles are dispersed. (C) 2003 Society of Chemical Industry.
Resumo:
This study utilised recent developments in forensic aromatic hydrocarbon fingerprint analysis to characterise and identify specific biogenic, pyrogenic and petrogenic contamination. The fingerprinting and data interpretation techniques discussed include the recognition of: The distribution patterns of hydrocarbons (alkylated naphthalene, phenanthrene, dibenzothiophene, fluorene, chrysene and phenol isomers), • Analysis of “source-specific marker” compounds (individual saturated hydrocarbons, including n-alkanes (n-C5 through 0-C40) • Selected benzene, toluene, ethylbenzene and xylene isomers (BTEX), • The recalcitrant isoprenoids; pristane and phytane and • The determination of diagnostic ratios of specific petroleum / non-petroleum constituents, and the application of various statistical and numerical analysis tools. An unknown sample from the Irish Environmental Protection Agency (EPA) for origin characterisation was subjected to analysis by gas chromatography utilising both flame ionisation and mass spectral detection techniques in comparison to known reference materials. The percentage of the individual Polycyclic Aromatic Hydrocarbons (PAIIs) and biomarker concentrations in the unknown sample were normalised to the sum of the analytes and the results were compared with the corresponding results with a range of reference materials. In addition, to the determination of conventional diagnostic PAH and biomarker ratios, a number of “source-specific markers” isomeric PAHs within the same alkylation levels were determined, and their relative abundance ratios were computed in order to definitively identify and differentiate the various sources. Statistical logarithmic star plots were generated from both sets of data to give a pictorial representation of the comparison between the unknown sample and reference products. The study successfully characterised the unknown sample as being contaminated with a “coal tar” and clearly demonstrates the future role of compound ratio analysis (CORAT) in the identification of possible source contaminants.
Resumo:
Evaluation of image quality (IQ) in Computed Tomography (CT) is important to ensure that diagnostic questions are correctly answered, whilst keeping radiation dose to the patient as low as is reasonably possible. The assessment of individual aspects of IQ is already a key component of routine quality control of medical x-ray devices. These values together with standard dose indicators can be used to give rise to 'figures of merit' (FOM) to characterise the dose efficiency of the CT scanners operating in certain modes. The demand for clinically relevant IQ characterisation has naturally increased with the development of CT technology (detectors efficiency, image reconstruction and processing), resulting in the adaptation and evolution of assessment methods. The purpose of this review is to present the spectrum of various methods that have been used to characterise image quality in CT: from objective measurements of physical parameters to clinically task-based approaches (i.e. model observer (MO) approach) including pure human observer approach. When combined together with a dose indicator, a generalised dose efficiency index can be explored in a framework of system and patient dose optimisation. We will focus on the IQ methodologies that are required for dealing with standard reconstruction, but also for iterative reconstruction algorithms. With this concept the previously used FOM will be presented with a proposal to update them in order to make them relevant and up to date with technological progress. The MO that objectively assesses IQ for clinically relevant tasks represents the most promising method in terms of radiologist sensitivity performance and therefore of most relevance in the clinical environment.
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
Calcium phosphate compounds such as Hydroxyapatite (HAp) were prepared by hydrothermal synthesis with phycogenic CaCO3 as starting material. Material obtained was characterised by usual methods (XRD, FTIR, TG, N2-adsorption, SEM and EDX) in order to study its physical-chemical characteristics. The prepared HAp showed that it may be suitable for use as a biomaterial.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.