928 resultados para Phase type distributions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete Conditional Phase-type (DC-Ph) models consist of a process component (survival distribution) preceded by a set of related conditional discrete variables. This paper introduces a DC-Ph model where the conditional component is a classification tree. The approach is utilised for modelling health service capacities by better predicting service times, as captured by Coxian Phase-type distributions, interfaced with results from a classification tree algorithm. To illustrate the approach, a case-study within the healthcare delivery domain is given, namely that of maternity services. The classification analysis is shown to give good predictors for complications during childbirth. Based on the classification tree predictions, the duration of childbirth on the labour ward is then modelled as either a two or three-phase Coxian distribution. The resulting DC-Ph model is used to calculate the number of patients and associated bed occupancies, patient turnover, and to model the consequences of changes to risk status.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work of this thesis is concerned with fitting Hypo-exponential and Erlang phase type distributions for modeling real life processes with non-exponential service time. There exist situations where exponential distributions cannot explain the distribution of service time properly. This thesis presents the application of two traditional statistical estimation techniques to approximate the service distributions of processes with coefficient of variation less than one. It also presents an algorithm to fit Hypo-exponential distribution for complex situations which can’t be handled properly with traditional estimation techniques. The result shows the effect of variation of sample size and other parameters on the efficiency of the estimation techniques by comparing their respective outputs. Furthermore it checks how accurately the proposed algorithm approximates a given distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new algorithm for learning the structure of a special type of Bayesian network. The conditional phase-type (C-Ph) distribution is a Bayesian network that models the probabilistic causal relationships between a skewed continuous variable, modelled by the Coxian phase-type distribution, a special type of Markov model, and a set of interacting discrete variables. The algorithm takes a dataset as input and produces the structure, parameters and graphical representations of the fit of the C-Ph distribution as output.The algorithm, which uses a greedy-search technique and has been implemented in MATLAB, is evaluated using a simulated data set consisting of 20,000 cases. The results show that the original C-Ph distribution is recaptured and the fit of the network to the data is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conditional Gaussian (CG) distributions allow the inclusion of both discrete and continuous variables in a model assuming that the continuous variable is normally distributed. However, the CG distributions have proved to be unsuitable for survival data which tends to be highly skewed. A new method of analysis is required to take into account continuous variables which are not normally distributed. The aim of this paper is to introduce the more appropriate conditional phase-type (C-Ph) distribution for representing a continuous non-normal variable while also incorporating the causal information in the form of a Bayesian network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel phase-type quantum-dot-array diffraction grating (QDADG) is reported. In contrast to an earlier amplitude-type QDADG [C. Wang , Rev. Sci. Instrum. 78, 053503 (2007)], the new phase-type QDADG would remove the zeroth order diffraction at some certain wavelength, as well as suppressing the higher-order diffractions. In this paper, the basic concept, the fabrication, the calibration techniques, and the calibration results are presented. Such a grating can be applied in the research fields of beam splitting, laser probe diagnostics, and so on.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete Conditional Phase-type (DC-Ph) models are a family of models which represent skewed survival data conditioned on specific inter-related discrete variables. The survival data is modeled using a Coxian phase-type distribution which is associated with the inter-related variables using a range of possible data mining approaches such as Bayesian networks (BNs), the Naïve Bayes Classification method and classification regression trees. This paper utilizes the Discrete Conditional Phase-type model (DC-Ph) to explore the modeling of patient waiting times in an Accident and Emergency Department of a UK hospital. The resulting DC-Ph model takes on the form of the Coxian phase-type distribution conditioned on the outcome of a logistic regression model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents multilevel models that utilize the Coxian phase-type distribution in order to be able to include a survival component in the model. The approach is demonstrated by modeling patient length of stay and in-hospital mortality in geriatric wards in Italy. The multilevel model is used to provide a means of controlling for the existence of possible intra-ward correlations, which may make patients within a hospital more alike in terms of experienced outcome than patients coming from different hospitals, everything else being equal. Within this multilevel model we introduce the use of the Coxian phase-type distribution to create a covariate that represents patient length of stay or stage (of hospital care). Results demonstrate that the use of the multilevel model for representing the in-patient mortality is successful and further enhanced by the inclusion of the Coxian phase-type distribution variable (stage covariate).