798 resultados para Peri-implantitis and Diagnosis
Resumo:
The purpose of this study is to assess clinical and microbiologic effects of the non-surgical treatment of peri-implantitis lesions using either an erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser or an air-abrasive subgingival polishing method.
Resumo:
AIM: To monitor over 12 months clinical and radiographic changes occurring after adjunctive local delivery of minocycline microspheres for the treatment of peri-implantitis. MATERIAL AND METHODS: In 25 partially edentulous subjects, 31 implants diagnosed with peri-implantitis were treated. Three weeks after oral hygiene instruction, mechanical debridement and local antiseptic cleansing using 0.2% chlorhexidine gel, baseline (Day 0) parameters were recorded. Minocycline microspheres (Arestin) were locally delivered to each implant site with bone loss and a probing pocket depth (PPD) >or=5 mm. Rescue therapy with Arestin was allowed at Days 180 and 270 at any site exhibiting an increase in PPD>or=2 mm from the previous visit. The following clinical parameters were recorded at four sites/implant at Day 0, 10, 30, 60, 90, 180, 270 and 360: PPD, clinical attachment level (CAL), bleeding on probing (BOP) and plaque index (PlI). RESULTS: Six implants in six subjects were either rescued or exited because of persisting active peri-implantitis. Successful implants showed a statistically significant reduction in both PPD and percentage of sites with BOP between baseline and Day 360 (P<0.05). At mesial implant sites, the mean PPD reduction amounted to 1.6 mm (95% CI: 0.9-2.2 mm, P<0.001) and was accompanied by a statistically significant reduction of the BOP value (P<0.001). Binary regression analysis showed that the clinical parameters and smoking history could not discriminate between successfully treated and rescued or exited implants at any observation time point. CONCLUSION: Non-surgical mechanical treatment of peri-implantitis lesions with adjunctive local delivery of microencapsulated minocycline led to positive effects on clinical parameters up to 12 months.
Resumo:
BACKGROUND: Although considerable bone fill may occur following treatment of peri-implantitis, re-osseointegration appears to be limited and unpredictable. Objectives: To evaluate the effects of various decontamination techniques and implant surface configurations on re-osseointegration of contaminated dental implants. MATERIAL AND METHODS: Three months after tooth extraction, implants consisting of a basal part and an exchangeable intraosseous implant cylinder (EIIC) were placed in the mandibles of dogs. The EIIC was machined (M), sandblasted and acid-etched (SLA), or titanium plasma sprayed (TPS). Ligature-induced peri-implantitis was initiated 8 weeks post-implantation and lasted until bone loss reached the junction of the two implant parts. Three treatment modalities were applied: (T1) the EIIC was exchanged for a pristine EIIC; (T2) the EIIC was sprayed in situ with saline; and (T3) the EIIC was removed, cleansed outside the mouth by spraying with saline, steam-sterilized, and remounted. A collagen barrier was placed over each fixture, and 3 months later, samples were processed for histology and histomorphometry. RESULTS: T2 revealed the highest bone-to-implant contact (BIC) level (significantly better than T1 and T3). T2 also yielded the highest bone crest level (significantly better than T1), followed by T3 (significantly better than T1). SLA showed the highest BIC level (significantly better than M), followed by TPS. There were no statistically significant differences in bone crest height between implant types. CONCLUSIONS: Both SLA implants and in situ cleansing resulted in the best re-osseointegration and bone fill of previously contaminated implants.
Resumo:
Subcutaneous emphysema are rare complications in periodontology. In most cases, they resolve spontaneously. However, air might disperse into deeper facial spaces causing life-threatening complications such as compression of the tracheobronchial tree or the development of pneumomediastinum. Moreover, microorganisms might spread from the oral cavity into deeper spaces. Hence, rapid diagnosis of subcutaneous emphysema is important. Characteristic signs are both a shiftable swelling and a crepitation. In this case report, the case of a 69-year old man with a subcutaneous emphysema immediately after peri-implantitis therapy with the use of a glycine-based powder air-polishing device is described. Following therapy, air accumulated in the left side of the face. Seven days after non-surgical peri-implantitis therapy, the patient was asymptomatic with complete resolution of the emphysema.
Resumo:
AIM To assess the clinical and radiographic outcomes applying a combined resective and regenerative approach in the treatment of peri-implantitis. MATERIALS AND METHODS Subjects with implants diagnosed with peri-implantitis (i.e., pocket probing depth (PPD) ≥5 mm with concomitant bleeding on probing (BoP) and ≥2 mm of marginal bone loss or exposure of ≥1 implant thread) were treated by means of a combined approach including the application of a deproteinized bovine bone mineral and a collagen membrane in the intrabony and implantoplasty in the suprabony component of the peri-implant lesion, respectively. The soft tissues were apically repositioned allowing for a non-submerged healing. Clinical and radiographic parameters were evaluated at baseline and 12 months after treatment. RESULTS Eleven subjects with 11 implants were treated and completed the 12-month follow-up. No implant was lost yielding a 100% survival rate. At baseline, the mean PPD and mean clinical attachment level (CAL) were 8.1 ± 1.8 mm and 9.7 ± 2.5 mm, respectively. After 1 year, a mean PPD of 4.0 ± 1.3 mm and a mean CAL of 6.7 ± 2.5 mm were assessed. The differences between the baseline and the follow-up examinations were statistically significant (P = 0.001). The mucosal recession increased from 1.7 ± 1.5 at baseline to 3.0 ± 1.8 mm at the 12-month follow-up (P = 0.003). The mean% of sites with BoP+ around the selected implants decreased from 19.7 ± 40.1 at baseline to 6.1 ± 24.0 after 12 months (P = 0.032). The radiographic marginal bone level decreased from 8.0 ± 3.7 mm at baseline to 5.2 ± 2.2 mm at the 12-month follow-up (P = 0.000001). The radiographic fill of the intrabony component of the defect amounted to 93.3 ± 13.0%. CONCLUSION Within the limits of this study, a combined regenerative and resective approach for the treatment of peri-implant defects yielded positive outcomes in terms of PPD reduction and radiographic defect fill after 12 months.
Resumo:
AIMS Over the past decades, the placement of dental implants has become a routine procedure in the oral rehabilitation of fully and partially edentulous patients. However, the number of patients/implants affected by peri-implant diseases is increasing. As there are--in contrast to periodontitis--at present no established and predictable concepts for the treatment of peri-implantitis, primary prevention is of key importance. The management of peri-implant mucositis is considered as a preventive measure for the onset of peri-implantitis. Therefore, the remit of this working group was to assess the prevalence of peri-implant diseases, as well as risks for peri-implant mucositis and to evaluate measures for the management of peri-implant mucositis. METHODS Discussions were informed by four systematic reviews on the current epidemiology of peri-implant diseases, on potential risks contributing to the development of peri-implant mucositis, and on the effect of patient and of professionally administered measures to manage peri-implant mucositis. This consensus report is based on the outcomes of these systematic reviews and on the expert opinion of the participants. RESULTS Key findings included: (i) meta-analysis estimated a weighted mean prevalence for peri-implant mucositis of 43% (CI: 32-54%) and for peri-implantitis of 22% (CI: 14-30%); (ii) bleeding on probing is considered as key clinical measure to distinguish between peri-implant health and disease; (iii) lack of regular supportive therapy in patients with peri-implant mucositis was associated with increased risk for onset of peri-implantitis; (iv) whereas plaque accumulation has been established as aetiological factor, smoking was identified as modifiable patient-related and excess cement as local risk indicator for the development of peri-implant mucositis; (v) patient-administered mechanical plaque control (with manual or powered toothbrushes) has been shown to be an effective preventive measure; (vi) professional intervention comprising oral hygiene instructions and mechanical debridement revealed a reduction in clinical signs of inflammation; (vii) adjunctive measures (antiseptics, local and systemic antibiotics, air-abrasive devices) were not found to improve the efficacy of professionally administered plaque removal in reducing clinical signs of inflammation. CONCLUSIONS Consensus was reached on recommendations for patients with dental implants and oral health care professionals with regard to the efficacy of measures to manage peri-implant mucositis. It was particularly emphasized that implant placement and prosthetic reconstructions need to allow proper personal cleaning, diagnosis by probing and professional plaque removal.
Resumo:
The treatment of infectious diseases affecting osseointegrated implants in function has become a demanding issue in implant dentistry. Since the early 1990s, preclinical data from animal studies have provided important insights into the etiology, pathogenesis and therapy of peri-implant diseases. Established lesions in animals have shown many features in common with those found in human biopsy material. The current review focuses on animal studies, employing different models to induce peri-implant mucositis and peri-implantitis.
Resumo:
This pilot study evaluated, by culture testing, the effectiveness of lethal photosensitization for the microbiological treatment of peri-implantitis in dogs. Experimental peri-implantitis was induced by ligature placement for 2 months. Following ligature removal, plaque control was instituted by scrubbing with 0.12% chlorhexidine daily for 12 months. Subsequently, mucoperiosteal flaps were elevated for scaling the implant surface. Microbial samples were obtained with paper points before and after treatment of implant surfaces by means of 100 microg/ml toluidine blue O (TBO,) and were exposed, for 80 s, to light with a wavelength of 685 nm from a 50 mW GaAlAs diode laser. The mean initial and final bacterial counts were 7.22 +/- 0.20 and 6.84 +/- 0.44 CFU/ml, respectively for TVC (P < 0.0001); 6.19 +/- 0.45 and 3.14 +/- 3.29 CFU/ml for P. intermedia/nigrescens (P = 0.001); 5.98 +/- 0.38 and 1.69 +/- 2.90 CFU/ml for Fusobacterium spp. (P = 0.001); and 6.07 +/- 0.22 to 1.69 +/- 2.94 CFU/ml for beta-hemolytic Streptococcus (P = 0.0039). It may be concluded that lethal photosensitization resulted in a reduction of the bacterial count. Complete elimination of bacteria was achieved in some samples.
Resumo:
The identification and treatment of peri-implant infections are an essential stage in the maintenance of dental implants, reflecting the longevity of rehabilitation. Therefore, the aim of the study was to conduct a literature review addressing peri-implantitis in dental implants in order to guide planning for the longevity of oral rehabilitation. It was conducted a detailed search strategy by the PubMed / Medline Dentistry and Oral Science, it was used as descriptors: “peri-implantitis” and “Dental Implant”, until July 2013. From 566 articles, after a review, according to the inclusion criteria, 34 articles were selected. The results were grouped together in topics (concept, etiology, diagnosis, surgical and nonsurgical, and aspects of oral rehabilitation) for further discussion and conclusions. Conclusions: The accumulation of plaque has been associated with a higher propensity to peri-implantitis. There is a higher incidence of the peri-implantitis disease among patients with previous history of periodontal disease. The local administration of antibiotics and association with mouthwashes / topical use are indicated as suitable for the treatment of moderate peri-implantitis.
Resumo:
Non-surgical peri-implantitis therapies appear to be ineffective. Limited data suggest that ER:YAG laser therapy improves clinical conditions. The present study aimed at comparing the treatment effects between air-abrasive (AM) and Er:YAG laser (LM) mono-therapy in cases with severe peri-implantitis.
Resumo:
BACKGROUND: Peri-implantitis is common in patients with dental implants. We performed a single-blinded longitudinal randomized study to assess the effects of mechanical debridement on the peri-implant microbiota in peri-implantitis lesions. MATERIALS AND METHODS: An expanded checkerboard DNA-DNA hybridization assay encompassing 79 different microorganisms was used to study bacterial counts before and during 6 months following mechanical treatment of peri-implantitis in 17 cases treated with curettes and 14 cases treated with an ultrasonic device. Statistics included non-parametric tests and GLM multivariate analysis with p<0001 indicating significance and 80% power. RESULTS: At selected implant test sites, the most prevalent bacteria were: Fusobacterium nucleatum sp., Staphylococci sp., Aggregatibacter actinomycetemcomitans, Helicobacter pylori, and Tannerella forsythia. 30 min. after treatment with curettes, A. actinomycetemcomitans (serotype a), Lactobacillus acidophilus, Streptococcus anginosus, and Veillonella parvula were found at lower counts (p<0.001). No such differences were found for implants treated with the ultrasonic device. Inconsistent changes occurred following the first week. No microbiological differences between baseline and 6-month samples were found for any species or between treatment study methods in peri-implantitis. CONCLUSIONS: Both methods failed to eliminate or reduce bacterial counts in peri-implantitis. No group differences were found in the ability to reduce the microbiota in peri-implantitis.
Resumo:
Purpose: A recent in vivo study has shown considerable contamination of internal implant and suprastructure components with great biodiversity, indicating bacterial leakage along the implant-abutment interface, abutment-prosthesis interface, and restorative margins. The goal of the present study was to compare microbiologically the peri-implant sulcus to these internal components on implants with no clinical signs of peri-implantitis and in function for many years. Checkerboard DNA-DNA hybridization was used to identify and quantify 40 species. Material and Methods: Fifty-eight turned titanium Brånemark implants in eight systemically healthy patients (seven women, one man) under regular supportive care were examined. All implants had been placed in the maxilla and loaded with a screw-retained full-arch bridge for an average of 9.6 years. Gingival fluid samples were collected from the deepest sulcus per implant for microbiological analysis. As all fixed restorations were removed, the cotton pellet enclosed in the intra-coronal compartment and the abutment screw were retrieved and microbiologically evaluated. Results: The pellet enclosed in the suprastructure was very similar to the peri-implant sulcus in terms of bacterial detection frequencies and levels for practically all the species included in the panel. Yet, there was virtually no microbial link between these compartments. When comparing the abutment screw to the peri-implant sulcus, the majority of the species were less frequently found, and in lower numbers at the former. However, a relevant link in counts for a lot of bacteria was described between these compartments. Even though all implants in the present study showed no clinical signs of peri-implantitis, the high prevalence of numerous species associated with pathology was striking. Conclusions: Intra-coronal compartments of screw-retained fixed restorations were heavily contaminated. The restorative margin may have been the principal pathway for bacterial leakage. Contamination of abutment screws most likely occurred from the peri-implant sulcus via the implant-abutment interface and abutment-prosthesis interface.
Resumo:
Objectives: To evaluate the extent of bone fill over 3 years following the surgical treatment of peri-implantitis with bone grafting with or without a membrane. Material and Methods: In a non-submerged wound-healing mode, 15 subjects with 27 implants were treated with a bone substitute (Algipore®) alone and 17 subjects with 29 implants were treated with the bone substitute and a resorbable membrane (Osseoquest®). Implants with radiographic bone loss ≥1.8 mm following the first year in function and with bleeding and/or pus on probing were included. Following surgery, subjects were given systemic antibiotics (10 days) and rinsed with chlorhexidine. After initial healing, the subjects were enrolled in a strict maintenance programme. Results: Statistical analysis failed to demonstrate changes in bone fill between 1 and 3 years both between and within procedure groups. The mean defect fill at 3 years was 1.3 ± (SD) 1.3 mm if treated with the bone substitute alone and 1.6 ± (SD) 1.2 mm if treated with an adjunct resorbable membrane, (p=0.40). The plaque index decreased from approximately 40–10%, remaining stable during the following 2 years. Conclusion: Defect fill using a bone substitute with or without a membrane technique in the treatment of peri-implantitis can be maintained over 3 years.
Resumo:
BACKGROUND: Peri-implantitis is associated with the presence of submarginal plaque, soft-tissue inflammation and advanced breakdown of the supporting bone. The progression of peri-implantitis following varying periods of continuing plaque accumulation has been studied in animal models. OBJECTIVE: The aim of the current experiment was to study the progression of peri-implantitis around implants with different surface roughness. MATERIAL AND METHODS: In five beagle dogs, three implants with either a sandblasted acid-etched surface (SLA) or a polished surface (P) were installed bilaterally in the edentulous premolar regions. After 3 months on a plaque control regimen, experimental peri-implantitis was induced by ligature placement and plaque accumulation was allowed to progress until about 40% of the height of the supporting bone had been lost. After this 4-month period, ligatures were removed and plaque accumulation was continued for an additional 5 months. Radiographs of all implant sites were obtained before and after 'active' experimental peri-implantitis as well as at the end of the experiment. Biopsies were harvested and the tissue samples were prepared for light microscopy. The sections were used for histometric and morphometric examinations. RESULTS: The radiographic examinations indicated that similar amounts of bone loss occurred at SLA and P sites during the active breakdown period, while the progression of bone loss was larger at SLA than at polished sites following ligature removal. The histological examination revealed that both bone loss and the size of the inflammatory lesion in the connective tissue were larger in SLA than in polished implant sites. The area of plaque was also larger at implants with an SLA surface than at implants with a polished surface. CONCLUSION: It is suggested that the progression of peri-implantitis, if left untreated, is more pronounced at implants with a moderately rough surface than at implants with a polished surface.