946 resultados para Performance Testing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Highway Traffic Safety Administration, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy Department, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated tri-axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal and fatigue cracking are the two of the major pavement distress phenomena that contribute significantly towards increased premature pavement failures in Ontario. This in turn puts a massive burden on the provincial budgets as the government spends huge sums of money on the repair and rehabilitation of roads every year. Governments therefore need to rethink and re-evaluate their current measures in order to prevent it in future. The main objectives of this study include: the investigation of fatigue distress of 11 contract samples at 10oC, 15oC, 20oC and 25oC and the use of crack-tip-opening-displacement (CTOD) requirements at temperatures other than 15oC; investigation of thermal and fatigue distress of the comparative analysis of 8 Ministry of Transportation (MTO) recovered and straight asphalt samples through double-edge-notched-tension test (DENT) and extended bending beam rheometry (EBBR); chemical testing of all samples though X-ray Fluorescence (XRF) and Fourier transform infrared analysis (FTIR); Dynamic Shear Rheometer (DSR) higher and intermediate temperature grading; and the case study of a local Kingston road. Majority of 11 contract samples showed satisfactory performance at all temperatures except one sample. Study of CTOD at various temperatures found a strong correlation between the two variables. All recovered samples showed poor performance in terms of their ability to resist thermal and fatigue distress relative to their corresponding straight asphalt as evident in DENT test and EBBR results. XRF and FTIR testing of all samples showed the addition of waste engine oil (WEO) to be the root cause of pavement failures. DSR high temperature grading showed superior performance of recovered binders relative to straight asphalt. The local Kingston road showed extensive signs of damage due to thermal and fatigue distress as evident from DENT test, EBBR results and pictures taken in the field. In the light of these facts, the use of waste engine oil and recycled asphalt in pavements should be avoided as these have been shown to cause premature failure in pavements. The DENT test existing CTOD requirements should be implemented at other temperatures in order to prevent the occurrences of premature pavement failures in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, tool support is addressed for the combined disciplines of Model-based testing and performance testing. Model-based testing (MBT) utilizes abstract behavioral models to automate test generation, thus decreasing time and cost of test creation. MBT is a functional testing technique, thereby focusing on output, behavior, and functionality. Performance testing, however, is non-functional and is concerned with responsiveness and stability under various load conditions. MBPeT (Model-Based Performance evaluation Tool) is one such tool which utilizes probabilistic models, representing dynamic real-world user behavior patterns, to generate synthetic workload against a System Under Test and in turn carry out performance analysis based on key performance indicators (KPI). Developed at Åbo Akademi University, the MBPeT tool is currently comprised of a downloadable command-line based tool as well as a graphical user interface. The goal of this thesis project is two-fold: 1) to extend the existing MBPeT tool by deploying it as a web-based application, thereby removing the requirement of local installation, and 2) to design a user interface for this web application which will add new user interaction paradigms to the existing feature set of the tool. All phases of the MBPeT process will be realized via this single web deployment location including probabilistic model creation, test configurations, test session execution against a SUT with real-time monitoring of user configurable metric, and final test report generation and display. This web application (MBPeT Dashboard) is implemented with the Java programming language on top of the Vaadin framework for rich internet application development. The Vaadin framework handles the complicated web communications processes and front-end technologies, freeing developers to implement the business logic as well as the user interface in pure Java. A number of experiments are run in a case study environment to validate the functionality of the newly developed Dashboard application as well as the scalability of the solution implemented in handling multiple concurrent users. The results support a successful solution with regards to the functional and performance criteria defined, while improvements and optimizations are suggested to increase both of these factors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the development of improved performance test protocols by renowned researchers, there are still road networks which experience premature cracking and failure. One area of major concern in asphalt science and technology, especially in cold regions in Canada is thermal (low temperature) cracking. Usually right after winter periods, severe cracks are seen on poorly designed road networks. Quality assurance tests based on improved asphalt performance protocols have been implemented by government agencies to ensure that roads being constructed are at the required standard but asphalt binders that pass these quality assurance tests still crack prematurely. While it would be easy to question the competence of the quality assurance test protocols, it should be noted that performance tests which are being used and were repeated in this study, namely the extended bending beam rheometer (EBBR) test, double edge-notched tension test (DENT), dynamic shear rheometer (DSR) test and X-ray fluorescence (XRF) analysis have all been verified and proven to successfully predict asphalt pavement behaviour in the field. Hence this study looked to probe and test the quality and authenticity of the asphalt binders being used for road paving. This study covered thermal cracking and physical hardening phenomenon by comparing results from testing asphalt binder samples obtained from the storage ‘tank’ prior to paving (tank samples) and recovered samples for the same contracts with aim of explaining why asphalt binders that have passed quality assurance tests are still prone to fail prematurely. The study also attempted to find out if the short testing time and automated procedure of torsion bar experiments can replace the established but tedious procedure of the EBBR. In the end, it was discovered that significant differences in performance and composition exist between tank and recovered samples for the same contracts. Torsion bar experimental data also indicated some promise in predicting physical hardening.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Published also as: Documento de Trabajo Banco de España 0504/2005.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper reports an approach by which laboratory based testing and numerical modelling can be combined to predict the long term performance of a range of concretes exposed to marine environments. Firstly, a critical review of the test methods for assessing the chloride penetration resistance of concrete is given. The repeatability of the different test results is also included. In addition to the test methods, a numerical simulation model is used to explore the test data further to obtain long-term chloride ingress trends. The combined use of testing and modelling is validated with the help of long-term chloride ingress data from a North Sea exposure site. In summary, the paper outlines a methodology for determining the long term performance of concrete in marine environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Implementation of both design for durability and performance-based standards and specifications are limited by the lack of rapid, simple, science based test methods for characterising the transport properties and deterioration resistance of concrete. This paper presents developments in the application of electrical property measurements as a testing methodology to evaluate the relative performance of a range of concrete mixes. The technique lends itself to in-situ monitoring thereby allowing measurements to be obtained on the as-placed concrete. Conductivity measurements are presented for concretes with and without supplementary cementitious materials (SCM’s) from demoulding up to 350 days. It is shown that electrical conductivity measurements display a continual decrease over the entire test period and attributed to pore structure refinement due to hydration and pozzolanic reaction. The term formation factor is introduced to rank concrete performance in terms of is resistance to chloride penetration.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In previous work, the authors presented a theoretical lower bound on the required number of testing runs for performance testing of digital forensic tools. We also demonstrated a practical method of testing showing how to tolerate both measurement and random errors in order to achieve results close to this bound. In this paper, we extend the previous work to the situation of correctness testing. The contribution of this methodology enables the tester to achieve correctness testing results of high quality from a manageable number of observations and in a dynamic but controllable way. This is of particular interest to forensic testers who do not have access to sophisticated equipment and who can allocate only a small amount of time to testing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the study was to compare anthropometric and physical performance data of players who were selected for a Victorian elite junior U18 Australian rules football squad. Prior to the selection of the final training squad, 54 players were assessed using a battery of standard anthropometric and physical performance tests. Multivariate analysis (MANOVA) showed significant (p < 0.05) differences between selected and non-selected players when height, mass, 20-m sprint, agility and vertical jump height were considered collectively. Univariate analysis revealed that the vertical jump was the only significant (p < 0.05) individual test and a near significant trend (p = 0.07) for height differentiating between selected and non-selected players with medium effect sizes for all other tests except endurance. In this elite junior football squad, physical characteristics can be observed that discriminate between players selected and non-selected, and demonstrates the value of physical fitness testing within the talent identification process of junior (16–18 years) players for squad and/or team selection. Based on MANOVA results, the findings from this study suggest team selection appeared to be related to a generally higher performance across the range of tests. Further, age was not a confounding variable as players selected tended to be younger than those non-selected. These findings reflect the general consensus that, in state-based junior competition, there is evidence of promoting overall player development, selecting those who are generally able to fulfil a range of positions and selecting players on their potential.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

To investigate changes in physiology, performance, and training practices of elite Australian rowers over 6 months.