63 resultados para Parvalbumin
Resumo:
In spite of over a century of research on cortical circuits, it is still unknown how many classes of cortical neurons exist. Neuronal classification has been a difficult problem because it is unclear what a neuronal cell class actually is and what are the best characteristics are to define them. Recently, unsupervised classifications using cluster analysis based on morphological, physiological or molecular characteristics, when applied to selected datasets, have provided quantitative and unbiased identification of distinct neuronal subtypes. However, better and more robust classification methods are needed for increasingly complex and larger datasets. We explored the use of affinity propagation, a recently developed unsupervised classification algorithm imported from machine learning, which gives a representative example or exemplar for each cluster. As a case study, we applied affinity propagation to a test dataset of 337 interneurons belonging to four subtypes, previously identified based on morphological and physiological characteristics. We found that affinity propagation correctly classified most of the neurons in a blind, non-supervised manner. In fact, using a combined anatomical/physiological dataset, our algorithm differentiated parvalbumin from somatostatin interneurons in 49 out of 50 cases. Affinity propagation could therefore be used in future studies to validly classify neurons, as a first step to help reverse engineer neural circuits.
Resumo:
Parvalbumins, calcium-binding, heat-stable proteins of considerable allergenic potential, are occurring in high concentration in light muscle of many fish species. Lack of knowledge about parvalbumins in sturgeon tissues prompted us to study the distribution of this type of proteins in light and dark muscle, as well as in swim bladder and skin of Atlantic sturgeon, Acipenser oxyrhynchus, and three other sturgeon species. Results: Light and dark muscle of sturgeons contained water soluble proteins with following properties: (1) Great stability against heating at 70 or 80 °C. (2) Isolelectric points between 3.85 and 5.66. (3) Treatment of proteins separated by isoelectric focusing with the dye “stains all” gave blue protein bands. (4) The molecular mass was about 10 to 14 kDalton. (5) Concentration of acidic, heat-stable proteins was higher in light than in dark muscle. Taken together, these findings gave strong indication for the presence of parvalbumins in muscle tissue of sturgeons. This conclusion was corroborated by immunological tests. However, parvalbumin could not be detected in swim bladder tissue. Skin preparations showed only traces of parvalbumins, possibly resulting from residual muscle tissue.
Resumo:
BACKGROUND: Mechanical and in particular tactile allodynia is a hallmark of chronic pain in which innocuous touch becomes painful. Previous cholera toxin B (CTB)-based neural tracing experiments and electrophysiology studies had suggested that aberrant axon sprouting from touch sensory afferents into pain-processing laminae after injury is a possible anatomical substrate underlying mechanical allodynia. This hypothesis was later challenged by experiments using intra-axonal labeling of A-fiber neurons, as well as single-neuron labeling of electrophysiologically identified sensory neurons. However, no studies have used genetically labeled neurons to examine this issue, and most studies were performed on spinal but not trigeminal sensory neurons which are the relevant neurons for orofacial pain, where allodynia oftentimes plays a dominant clinical role. FINDINGS: We recently discovered that parvalbumin::Cre (Pv::Cre) labels two types of Aβ touch neurons in trigeminal ganglion. Using a Pv::CreER driver and a Cre-dependent reporter mouse, we specifically labeled these Aβ trigeminal touch afferents by timed taxomifen injection prior to inflammation or infraorbital nerve injury (ION transection). We then examined the peripheral and central projections of labeled axons into the brainstem caudalis nucleus after injuries vs controls. We found no evidence for ectopic sprouting of Pv::CreER labeled trigeminal Aβ axons into the superficial trigeminal noci-receptive laminae. Furthermore, there was also no evidence for peripheral sprouting. CONCLUSIONS: CreER-based labeling prior to injury precluded the issue of phenotypic changes of neurons after injury. Our results suggest that touch allodynia in chronic orofacial pain is unlikely caused by ectopic sprouting of Aβ trigeminal afferents.
Resumo:
A sub-chronic administration of phencyclidine to the rat brings about enduring pathophysiological and cognitive changes that resemble some features of schizophrenia. The present study aimed to determine whether the behavioural consequence of this phencyclidine regime extends to a long-term disruption of social interaction that might provide a parallel with some negative symptoms of the disease. Rats were treated with phencyclidine (2mg/kg bi-daily for 1 week) or vehicle followed by a drug-free period. Social interaction was assessed 24h, 1 week, 3 weeks and 6 weeks post-treatment. A long-lasting disturbance of social behaviour was observed in the phencyclidine group, namely more contact and non-contact interaction with an unfamiliar target rat at all time points. Six weeks post-phencyclidine, analysis of brains showed a reduction in expression of parvalbumin immunoreactive neurons in the hippocampus with significant reductions localised to the CA1 and dentate gyrus regions. These results show that sub-chronic phencyclidine produces long-lasting disruptions in social interaction that, however, do not model the social withdrawal seen in patients with schizophrenia. These disturbances of social behaviour may be associated with concurrent pathophysiological brain changes.
Resumo:
A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.
Resumo:
Parvalbumin-immunoreactive interneurons are surrounded by perineuronal nets, containing molecules of the extracellular matrix (e.g. tenascin-R). Furthermore, they seem to have a special cytoskeleton composed of, among others, ankyrinR and beta Rspectrin. In the present developmental study we showed that the intracellular markers parvalbumin, ankyrinR and beta Rspectrin as well as Vicia Villosa agglutinin, an extracellular marker for perineuronal nets, appeared in the second postnatal week. In the third postnatal week, ankyrinR and beta R spectrin were present in the parvalbumin-positive interneurons. Tenascin-R appeared in a similar topographic distribution as the intracellular markers. The adult pattern was established upon the end of the fourth postnatal week. Our results indicate that cytoskeletal maturity maybe a prerequisite for the organization of perineuronal nets of extracellular matrix.
Resumo:
The successful development of stable biosensors incorporating entrapped proteins suffers from poor understanding of the properties of the entrapped biomolecules. This thesis reports on the use of fluorescence spectroscopy to investigate the properties of proteins entrapped in sol-gel processed silicate materials. Two different single tryptophan (Trp) proteins were investigated in this thesis, the Ca2 + binding protein cod III parvalbumin (C3P) and the salicylate binding protein human serum albumin (HSA). Furthermore, the reactive single cysteine (Cys) residue within C3P and HSA were labelled with the probes iodoacetoxynitrobenzoxadiazole (C3P) and acrylodan (C3P and HSA) to further examine the structure, stability and function of the free and entrapped proteins. The results show that both C3P and HSA can be successfully entrapped into sol-gelderived matrices with retention of function and conformational flexibility.
Resumo:
La période postnatale et l’expérience sensorielle sont critiques pour le développement du système visuel. Les interneurones inhibiteurs exprimant l’acide γ-aminobutyrique (GABA) jouent un rôle important dans le contrôle de l’activité neuronale, le raffinement et le traitement de l’information sensorielle qui parvient au cortex cérébral. Durant le développement, lorsque le cortex cérébral est très susceptible aux influences extrinsèques, le GABA agit dans la formation des périodes critiques de sensibilité ainsi que dans la plasticité dépendante de l’expérience. Ainsi, ce système inhibiteur servirait à ajuster le fonctionnement des aires sensorielles primaires selon les conditions spécifiques d’activité en provenance du milieu, des afférences corticales (thalamiques et autres) et de l’expérience sensorielle. Certaines études montrent que des différences dans la densité et la distribution de ces neurones inhibiteurs corticaux reflètent les caractéristiques fonctionnelles distinctes entre les différentes aires corticales. La Parvalbumine (PV), la Calretinine (CR) et la Calbindine (CB) sont des protéines chélatrices du calcium (calcium binding proteins ou CaBPs) localisées dans différentes sous-populations d’interneurones GABAergiques corticaux. Ces protéines tamponnent le calcium intracellulaire de sorte qu’elles peuvent moduler différemment plusieurs fonctions neuronales, notamment l’aspect temporel des potentiels d’action, la transmission synaptique et la potentialisation à long terme. Plusieurs études récentes montrent que les interneurones immunoréactifs (ir) aux CaBPs sont également très sensibles à l’expérience et à l’activité sensorielle durant le développement et chez l’adulte. Ainsi, ces neurones pourraient avoir un rôle crucial à jouer dans le phénomène de compensation ou de plasticité intermodale entre les cortex sensoriels primaires. Chez le hamster (Mesocricetus auratus), l’énucléation à la naissance fait en sorte que le cortex visuel primaire peut être recruté par les autres modalités sensorielles, telles que le toucher et l’audition. Suite à cette privation oculaire, il y a établissement de projections ectopiques permanentes entre les collicules inférieurs (CI) et le corps genouillé latéral (CGL). Ceci a pour effet d’acheminer l’information auditive vers le cortex visuel primaire (V1) durant le développement postnatal. À l’aide de ce modèle, l’objectif général de ce projet de thèse est d’étudier l’influence et le rôle de l’activité sensorielle sur la distribution et l’organisation des interneurones corticaux immunoréactifs aux CaBPs dans les aires sensorielles visuelle et auditive primaires du hamster adulte. Les changements dans l’expression des CaBPs ont été déterminés d’une manière quantitative en évaluant les profils de distribution laminaire de ces neurones révélés par immunohistochimie. Dans une première expérience, nous avons étudié la distribution laminaire des CaBPs dans les aires visuelle (V1) et auditive (A1) primaires chez le hamster normal adulte. Les neurones immunoréactifs à la PV et la CB, mais non à la CR, sont distribués différemment dans ces deux cortex primaires dédiés à une modalité sensorielle différente. Dans une deuxième étude, une comparaison a été effectuée entre des animaux contrôles et des hamsters énucléés à la naissance. Cette étude montre que le cortex visuel primaire de ces animaux adopte une chimioarchitecture en PV similaire à celle du cortex auditif. Nos recherches montrent donc qu’une suppression de l’activité visuelle à la naissance peut influencer l’expression des CaBPs dans l’aire V1 du hamster adulte. Ceci suggère également que le type d’activité des afférences en provenance d’autres modalités sensorielles peut moduler, en partie, une circuiterie corticale en CaBPs qui lui est propre dans le cortex hôte ou recruté. Ainsi, nos travaux appuient l’hypothèse selon laquelle il serait possible que certaines de ces sous-populations d’interneurones GABAergiques jouent un rôle crucial dans le phénomène de la plasticité intermodale.
Resumo:
L’encéphalopathie hypoxique-‐ischémique cause des milliers de victimes à travers le monde chaque année. Les enfants survivants à un épisode hypoxique-‐ischémique sont à risque de développer des problèmes neurologiques incapacitants comme une paralysie cérébrale, un retard mental, une épilepsie ou des troubles d’ordre comportemental. Les modèles animaux ont amélioré nos connaissances sur les mécanismes sous-‐jacents aux dommages cérébraux, mais elles sont encore trop incomplètes pour être capables de prévenir les problèmes neurologiques. Ce projet vise à comprendre l’impact d’un épisode asphyxique périnatale associé à des convulsions ainsi que l’activation de l’adenosine monophosphate-‐activated protein kinase (AMPK) sur les circuits GABAergiques inhibiteurs en développement chez la souris. Dans le but d’investiguer le sort des neurones inhibiteurs, appelés interneurones, suite à un épisode asphyxique périnatal associé à des convulsions avec des animaux transgéniques, nous avons pris avantage d’un nouveau modèle d’hypoxie permettant d’induire des convulsions chez la souris. Deux populations d’interneurones représentant ensemble environ 60% de tous les interneurones corticaux ont été étudiées, soit les cellules exprimant la parvalbumine (PV) et les cellules exprimant la somatostatine (SOM). L’étude stéréologique n’a montré aucune mort neuronale de ces deux populations d’interneurones dans l’hippocampe chez les souris hypoxique d’âge adulte. Par contre, le cortex des souris hypoxiques présentait des zones complètement ou fortement dépourvues de cellules PV alors que les cellules SOM n’étaient pas affectées. L’utilisation d’une lignée de souris transgénique exprimant une protéine verte fluorescente (GFP) dans les cellules PV nous a permis de comprendre que les trous PV sont le reflet de deux choses : 1) une diminution des cellules PV et 2) une immaturité des cellules PV restantes. Puisque les cellules PV sont spécifiquement affectées dans la première partie de notre étude, nous avons voulu étudier les mécanismes moléculaires sous-‐jacents à cette vulnérabilité. L’AMPK est un senseur d’énergie qui orchestre le rétablissement des i niveaux d’énergie cellulaire dans le cas d’une déplétion énergétique en modulant des voies de signalisation impliquant la synthèse de protéines et l’excitabilité membranaire. Il est possible que l’activation d’AMPK suite à un épisode asphyxique périnatal associé à des convulsions soit néfaste à long-‐terme pour le circuit GABAergique en développement et modifie l’établissement de l’innervation périsomatique d’une cellule PV sur les cellules pyramidales. Nous avons étudié cette hypothèse dans un modèle de culture organotypique en surexprimant la forme wild-‐type (WT) de la sous-‐unité α2 d’AMPK, ainsi qu’une forme mutée dominante négative (DN), dans des cellules PV individuelles. Nous avons montré que pendant la phase de formation synaptique (jours post-‐natals équivalents EP 10-‐18), la surexpression de la forme WT désorganise la stabilisation des synapses. De plus, l’abolition de l’activité d’AMPK semble augmenter le nombre de synapses périsomatiques faits par la cellule PV sur les cellules pyramidales pendant la phase de formation et semble avoir l’effet inverse pendant la phase de maturation (EP 16-‐24). La neurotransmission GABAergique joue plusieurs rôles dans le cerveau, depuis la naissance jusqu’à l’âge adulte des interneurones, et une dysfonction des interneurones a été associée à plusieurs troubles neurologiques, comme la schizophrénie, l’autisme et l’épilepsie. La maturation des circuits GABAergiques se fait majoritairement pendant la période post-‐natale et est hautement dépendante de l’activité neuronale et de l’expérience sensorielle. Nos résultats révèlent que le lourd fardeau en demande énergétique d’un épisode asphyxique périnatal peut causer une mort neuronale sélective des cellules PV et compromettre l’intégrité de leur maturation. Un des mécanismes sous-‐ jacents possible à cette immaturité des cellules PV suite à l’épisode hypoxique est l’activation d’AMPK, en désorganisant leur profil d’innervation sur les cellules pyramidales. Nous pensons que ces changements dans le réseau GABAergique pourrait contribuer aux problèmes neurologiques associés à une insulte hypoxique.
Resumo:
Les mutations du gène CACNA1A, encodant la sous-unité α du canal calcique voltage-dépendant CaV2.1, causent l’ataxie épisodique de type 2 (EA2) chez l’humain. Nous avons investigué une cohorte de 16 patients de quatre familles canadiennes-françaises porteurs de mutations induisant une perte de fonction du gène CACNA1A. Outre une ataxie épisodique et un risque élevé d’épilepsie, la majorité de ces patients présentait des symptômes neurocognitifs incluant de l’inattention, des troubles d’apprentissage et une rigidité cognitive. Nous avons récemment démontré qu’une délétion sélective de Cacna1a dans les interneurones (INs) GABAergiques corticaux induit une dysfonction synaptique des IN exprimant la parvalbumine (PV) et suffit à induire une épilepsie généralisée. Cependant, les mécanismes sous-tendant l’atteinte cognitive associée aux délétions du gène CACNA1A sont inconnus. Nous postulons que la perte sélective d’inhibition périsomatique corticale résultant de la dysfonction synaptique des IN PV contribue aux déficits cognitifs associés aux délétions de Cacna1a. Afin d’investiguer cette hypothèse, nous avons généré une lignée de souris mutantes portant une délétion hétérozygote conditionnelle de Cacna1a restreinte aux populations neuronales exprimant la PV (PVcre; Cacna1ac/+). En couplant optogénétique et électrophysiologie, nous avons démontré que cette mutation affecte significativement l’inhibition des cellules pyramidales du cortex orbitofrontal par les IN PV. Nous avons de plus démontré que les mutants PVcre; Cacna1ac/+ présentent des troubles d’impulsivité et de rigidité cognitive dans différents paradigmes comportementaux. En conclusion, nos travaux suggèrent qu’une haploinsuffisance de Cacna1a engendre des déficits cognitifs et comportementaux en partie imputables à une dysfonction de l’inhibition périsomatique au niveau des circuits orbitofrontaux.
Resumo:
La déficience intellectuelle est la cause d’handicap la plus fréquente chez l’enfant. De nombreuses évidences convergent vers l’idée selon laquelle des altérations dans les gènes synaptiques puissent expliquer une fraction significative des affections neurodéveloppementales telles que la déficience intellectuelle ou encore l’autisme. Jusqu’à récemment, la majorité des mutations associées à la déficience intellectuelle a été liée au chromosome X ou à la transmission autosomique récessive. D’un autre côté, plusieurs études récentes suggèrent que des mutations de novo dans des gènes à transmission autosomique dominante, requis dans les processus de la plasticité synaptique peuvent être à la source d’une importante fraction des cas de déficience intellectuelle non syndromique. Par des techniques permettant la capture de l’exome et le séquençage de l’ADN génomique, notre laboratoire a précédemment reporté les premières mutations pathogéniques dans le gène à transmission autosomique dominante SYNGAP1. Ces dernières ont été associées à des troubles comportementaux tels que la déficience intellectuelle, l’inattention, des problèmes d’humeur, d’impulsivité et d’agressions physiques. D’autres patients sont diagnostiqués avec des troubles autistiques et/ou des formes particulières d’épilepsie généralisée. Chez la souris, le knock-out constitutif de Syngap1 (souris Syngap1+/-) résulte en des déficits comme l’hyperactivité locomotrice, une réduction du comportement associée à l’anxiété, une augmentation du réflexe de sursaut, une propension à l’isolation, des problèmes dans le conditionnement à la peur, des troubles dans les mémoires de travail, de référence et social. Ainsi, la souris Syngap1+/- représente un modèle approprié pour l’étude des effets délétères causés par l’haploinsuffisance de SYNGAP1 sur le développement de circuits neuronaux. D’autre part, il est de première importance de statuer si les mutations humaines aboutissent à l’haploinsuffisance de la protéine. SYNGAP1 encode pour une protéine à activité GTPase pour Ras. Son haploinsuffisance entraîne l’augmentation des niveaux d’activité de Ras, de phosphorylation de ERK, cause une morphogenèse anormale des épines dendritiques et un excès dans la concentration des récepteurs AMPA à la membrane postsynaptique des neurones excitateurs. Plusieurs études suggèrent que l’augmentation précoce de l’insertion des récepteurs AMPA au sein des synapses glutamatergiques contribue à certains phénotypes observés chez la souris Syngap1+/-. En revanche, les conséquences de l’haploinsuffisance de SYNGAP1 sur les circuits neuronaux GABAergiques restent inconnues. Les enjeux de mon projet de PhD sont: 1) d’identifier l’impact de mutations humaines dans la fonction de SYNGAP1; 2) de déterminer si SYNGAP1 contribue au développement et à la fonction des circuits GABAergiques; 3) de révéler comment l’haploinsuffisance de Syngap1 restreinte aux circuits GABAergiques affecte le comportement et la cognition. Nous avons publié les premières mutations humaines de type faux-sens dans le gène SYNGAP1 (c.1084T>C [p.W362R]; c.1685C>T [p.P562L]) ainsi que deux nouvelles mutations tronquantes (c.2212_2213del [p.S738X]; c.283dupC [p.H95PfsX5]). Ces dernières sont toutes de novo à l’exception de c.283dupC, héritée d’un père mosaïque pour la même mutation. Dans cette étude, nous avons confirmé que les patients pourvus de mutations dans SYNGAP1 présentent, entre autre, des phénotypes associés à des troubles comportementaux relatifs à la déficience intellectuelle. En culture organotypique, la transfection biolistique de l’ADNc de Syngap1 wild-type dans des cellules pyramidales corticales réduit significativement les niveaux de pERK, en fonction de l’activité neuronale. Au contraire les constructions plasmidiques exprimant les mutations W362R, P562L, ou celle précédemment répertoriée R579X, n’engendre aucun effet significatif sur les niveaux de pERK. Ces résultats suggèrent que ces mutations faux-sens et tronquante résultent en la perte de la fonction de SYNGAP1 ayant fort probablement pour conséquences d’affecter la régulation du développement cérébral. Plusieurs études publiées suggèrent que les déficits cognitifs associés à l’haploinsuffisance de SYNGAP1 peuvent émerger d’altérations dans le développement des neurones excitateurs glutamatergiques. Toutefois, si, et auquel cas, de quelle manière ces mutations affectent le développement des interneurones GABAergiques résultant en un déséquilibre entre l’excitation et l’inhibition et aux déficits cognitifs restent sujet de controverses. Par conséquent, nous avons examiné la contribution de Syngap1 dans le développement des circuits GABAergiques. A cette fin, nous avons généré une souris mutante knockout conditionnelle dans laquelle un allèle de Syngap1 est spécifiquement excisé dans les interneurones GABAergiques issus de l’éminence ganglionnaire médiale (souris Tg(Nkx2.1-Cre);Syngap1flox/+). En culture organotypique, nous avons démontré que la réduction de Syngap1 restreinte aux interneurones inhibiteurs résulte en des altérations au niveau de leur arborisation axonale et dans leur densité synaptique. De plus, réalisés sur des coupes de cerveau de souris Tg(Nkx2.1-Cre);Syngap1flox/+, les enregistrements des courants inhibiteurs postsynaptiques miniatures (mIPSC) ou encore de ceux évoqués au moyen de l’optogénétique (oIPSC) dévoilent une réduction significative de la neurotransmission inhibitrice corticale. Enfin, nous avons comparé les performances de souris jeunes adultes Syngap1+/-, Tg(Nkx2.1-Cre);Syngap1flox/+ à celles de leurs congénères contrôles dans une batterie de tests comportementaux. À l’inverse des souris Syngap1+/-, les souris Tg(Nkx2.1-Cre);Syngap1flox/+ ne présentent pas d’hyperactivité locomotrice, ni de comportement associé à l’anxiété. Cependant, elles démontrent des déficits similaires dans la mémoire de travail et de reconnaissance sociale, suggérant que l’haploinsuffisance de Syngap1 restreinte aux interneurones GABAergiques dérivés de l’éminence ganglionnaire médiale récapitule en partie certains des phénotypes cognitifs observés chez la souris Syngap1+/-. Mes travaux de PhD établissent pour la première fois que les mutations humaines dans le gène SYNGAP1 associés à la déficience intellectuelle causent la perte de fonction de la protéine. Mes études dévoilent, également pour la première fois, l’influence significative de ce gène dans la régulation du développement et de la fonction des interneurones. D’admettre l’atteinte des cellules GABAergiques illustre plus réalistement la complexité de la déficience intellectuelle non syndromique causée par l’haploinsuffisance de SYNGAP1. Ainsi, seule une compréhension raffinée de cette condition neurodéveloppementale pourra mener à une approche thérapeutique adéquate.
Resumo:
Sensory afferent signals from neck muscles have been postulated to influence central cardiorespiratory control as components of postural reflexes, but neuronal pathways for this action have not been identified. The intermedius nucleus of the medulla (InM) is a target of neck muscle spindle afferents and is ideally located to influence such reflexes but is poorly investigated. To aid identification of the nucleus, we initially produced three-dimensional reconstructions of the InM in both mouse and rat. Neurochemical analysis including transgenic reporter mice expressing green fluorescent protein in GABA-synthesizing neurons, immunohistochemistry, and in situ hybridization revealed that the InM is neurochemically diverse, containing GABAegric and glutamatergic neurons with some degree of colocalization with parvalbumin, neuronal nitric oxide synthase, and calretinin. Projections from the InM to the nucleus tractus solitarius (NTS) were studied electrophysiologically in rat brainstem slices. Electrical stimulation of the NTS resulted in antidromically activated action potentials within InM neurons. In addition, electrical stimulation of the InM resulted in EPSPs that were mediated by excitatory amino acids and IPSPs mediated solely by GABA(A) receptors or by GABA(A) and glycine receptors. Chemical stimulation of the InM resulted in (1) a depolarization of NTS neurons that were blocked by NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonoamide) or kynurenic acid and (2) a hyperpolarization of NTS neurons that were blocked by bicuculline. Thus, the InM contains neurochemically diverse neurons and sends both excitatory and inhibitory projections to the NTS. These data provide a novel pathway that may underlie possible reflex changes in autonomic variables after neck muscle spindle afferent activation.
Resumo:
We investigated the possible participation of TRPV1 channels in retinal apoptosis and overall development. Retinas from newborn, male albino rats were treated in vitro with capsazepine, a TRPV1 antagonist. The expression of cell cycle markers was not changed after TRPV1 blockade, whereas capsazepine reduced the number of apoptotic cells throughout the retina,increased ERK1/2 and p38 phosphorylation and slightly reduced JNK phosphorylation. The expression of BAD, Bcl-2, as well as integral and cleaved capsase-3 were similar in all experimental conditions. Newborn rats were kept for 2 months after receiving high doses of capsazepine. In their retinas, calbindin and parvalbumin protein levels were upregulated, but only the number of amacrine-like, parvalbumin-positive cells was increased. The numbers of calretinin, calbindin, ChAT, vimentin, PKC-alpha and GABA-positive cells were similar in both conditions. Protein expression of synapsin Ib was also increased in the retinas of capsazepine-treated rats. Calretinin, vimentin, GFAP, synapsin Ia, synaptophysin and light neurofilament protein levels were not changed when compared to control values. Our results indicate that TRPV1 channels play a role in the control of the early apoptosis that occur during retinal development, which might be dependent on MAPK signaling. Moreover, it seems that TRPV1 function might be important for neuronal and synaptic maturation in the retina. (C) 2011 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
The hypothalamic suprachiasmatic nucleus (SCN) and the thalamic intergeniculate leaflet (IGL) are considered to be the main centers of the mammalian circadian timing system. In primates, the IGL is included as part of the pregeniculate nucleus (PGN), a cell group located mediodorsally to the dorsal lateral geniculate nucleus. This work was carried out to comparatively evaluate the immunohistochemical expression of the calcium-binding proteins calbindin D-28k (CB), parvalbumin (PV), and calretinin (CR) into the circadian brain districts of the common marmoset and the rock cavy. In both species, although no fibers, terminals or perikarya showed PV-immunoreaction (IR) into the SCN, CB-IR perikarya labeling was detected throughout the SCN rostrocaudal extent, Seeming to delimit its cytoarchitectonic borders. CR-IR perikarya and neuropil were noticed into the ventral and dorsal portions of the SCN, lacking immunoreactivity in the central core of the marmoset and filling the entire nucleus in the rockcavy. The PGN of the marmoset presented a significant number of CB-, PV-, and CR-IR perikarya throughout the nucleus. The IGL of the rocky cavy exhibited a prominent CB- and CR-IR neuropil, showing similarity to the pattern found in other rodents. By comparing with literature data from other mammals, the results of the present study suggest that CB, PV, and CR are differentially distributed into the SCN and IGL among species. They may act either in concert or in a complementary manner in the SCN and IGL, so as to participate in specific aspects of the circadian regulation. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Physical exercise is known to enhance brain function in several aspects. We evaluated the acute effects of a moderate forced exercise protocol on synaptic proteins, namely synapsin 1 (SYN) and synaptophysin (SYP), and structural proteins (neurofilaments, NFs) in rat brain regions related to motor function and often affected by neurodegenerative disorders. Immunohistochemistry, Western blotting and real-time PCR were used to analyze the expression of those proteins after 3, 7 and 15 days of exercise (EX3, EX7 and EX15). In the cerebellum, increase of SYN was observed at EX7 and EX15 and of NF68 at EX3. In the substantia nigra, increases of protein levels were observed for NF68 and NF160 at EX3. In the striatum, there was an increase of SYN at EX3 and EX7, of SYP at EX7 and of NF68 at EX3. In the cortex, decreased levels of NF68 and NF160 were observed at EX3, followed by an increase of NF68 at EX15. In the reticular formation, all NF proteins were increased at EX15. The mRNA data for each time-point and region also revealed significant exercise-related changes of SYN, SYP and NF expression. These results suggest that moderate physical exercise modulates synaptic and structural proteins in motor brain areas, which may play an important role in the exercise-dependent brain plasticity. (C) 2010 Elsevier B.V. All rights reserved.