825 resultados para Pareto optimality


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dynamic and Partial Reconfiguration (DPR) allows a system to be able to modify certain parts of itself during run-time. This feature gives rise to the capability of evolution: changing parts of the configuration according to the online evaluation of performance or other parameters. The evolution is achieved through a bio-inspired model in which the features of the system are identified as genes. The objective of the evolution may not be a single one; in this work, power consumption is taken into consideration, together with the quality of filtering, as the measure of performance, of a noisy image. Pareto optimality is applied to the evolutionary process, in order to find a representative set of optimal solutions as for performance and power consumption. The main contributions of this paper are: implementing an evolvable system on a low-power Spartan-6 FPGA included in a Wireless Sensor Network node and, by enabling the availability of a real measure of power consumption at run-time, achieving the capability of multi-objective evolution, that yields different optimal configurations, among which the selected one will depend on the relative “weights” of performance and power consumption.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El objetivo de esta tesis es la caracterización de la generación térmica representativa de la existente en la realidad, para posteriormente proceder a su modelización y simulación integrándolas en una red eléctrica tipo y llevar a cabo estudios de optimización multiobjetivo económico medioambiental. Para ello, en primera instancia se analiza el contexto energético y eléctrico actual, y más concretamente el peninsular, en el que habiendo desaparecido las centrales de fuelóleo, sólo quedan ciclos combinados y centrales de carbón de distinto rango. Seguidamente se lleva a cabo un análisis de los principales impactos medioambientales de las centrales eléctricas basadas en combustión, representados sobre todo por sus emisiones de CO2, SO2 y NOx, de las medidas de control y mitigación de las mismas y de la normativa que les aplica. A continuación, a partir de las características de los combustibles y de la información de los consumos específicos, se caracterizan los grupos térmicos frente a las funciones relevantes que definen su comportamiento energético, económico y medioambiental, en términos de funciones de salida horarias dependiendo de la carga. Se tiene en cuenta la posibilidad de desnitrificación y desulfuración. Dado que las funciones objetivo son múltiples, y que están en conflicto unas con otras, se ha optado por usar métodos multiobjetivo que son capaces de identificar el contorno de puntos óptimos o frente de Pareto, en los que tomando una solución no existe otra que lo mejore en alguna de las funciones objetivo sin empeorarlo en otra. Se analizaron varios métodos de optimización multiobjetivo y se seleccionó el de las ε constraint, capaz de encontrar frentes no convexos y cuya optimalidad estricta se puede comprobar. Se integró una representación equilibrada de centrales de antracita, hulla nacional e importada, lignito y ciclos combinados en la red tipo IEEE-57, en la que se puede trabajar con siete centrales sin distorsionar demasiado las potencias nominales reales de los grupos, y se programó en Matlab la resolución de flujos óptimos de carga en alterna con el método multiobjetivo integrado. Se identifican los frentes de Pareto de las combinaciones de coste y cada uno de los tres tipos de emisión, y también el de los cuatro objetivos juntos, obteniendo los resultados de costes óptimos del sistema para todo el rango de emisiones. Se valora cuánto le cuesta al sistema reducir una tonelada adicional de cualquier tipo de emisión a base de desplazarse a combinaciones de generación más limpias. Los puntos encontrados aseguran que bajo unas determinadas emisiones no pueden ser mejorados económicamente, o que atendiendo a ese coste no se puede reducir más allá el sistema en lo relativo a emisiones. También se indica cómo usar los frentes de Pareto para trazar estrategias óptimas de producción ante cambios horarios de carga. ABSTRACT The aim of this thesis is the characterization of electrical generation based on combustion processes representative of the actual power plants, for the latter modelling and simulation of an electrical grid and the development of economic- environmental multiobjective optimization studies. In this line, the first step taken is the analysis of the current energetic and electrical framework, focused on the peninsular one, where the fuel power plants have been shut down, and the only ones remaining are coal units of different types and combined cycle. Then it is carried out an analysis of the main environmental impacts of the thermal power plants, represented basically by the emissions of CO2, SO2 y NOx, their control and reduction measures and the applicable regulations. Next, based on the combustibles properties and the information about the units heat rates, the different power plants are characterized in relation to the outstanding functions that define their energy, economic and environmental behaviour, in terms of hourly output functions depending on their load. Optional denitrification and desulfurization is considered. Given that there are multiple objectives, and that they go in conflictive directions, it has been decided the use of multiobjective techniques, that have the ability of identifying the optimal points set, which is called the Pareto front, where taken a solution there will be no other point that can beat the former in an objective without worsening it in another objective. Several multiobjective optimization methods were analysed and pondered, selecting the ε constraint technique, which is able to find no convex fronts and it is opened to be tested to prove the strict Pareto optimality of the obtained solutions. A balanced representation of the thermal power plants, formed by anthracite, lignite, bituminous national and imported coals and combined cycle, was integrated in the IEEE-57 network case. This system was selected because it deals with a total power that will admit seven units without distorting significantly the actual size of the power plants. Next, an AC optimal power flow with the multiobjective method implemented in the routines was programmed. The Pareto fronts of the combination of operative costs with each of the three emissions functions were found, and also the front of all of them together. The optimal production costs of the system for all the emissions range were obtained. It is also evaluated the cost of reducing an additional emission ton of any of the emissions when the optimal production mix is displaced towards cleaner points. The obtained solutions assure that under a determined level of emissions they cannot be improved economically or, in the other way, at a determined cost it cannot be found points of lesser emissions. The Pareto fronts are also applied for the search of optimal strategic paths to follow the hourly load changes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been an increasing interest in the development of new methods using Pareto optimality to deal with multi-objective criteria (for example, accuracy and time complexity). Once one has developed an approach to a problem of interest, the problem is then how to compare it with the state of art. In machine learning, algorithms are typically evaluated by comparing their performance on different data sets by means of statistical tests. Standard tests used for this purpose are able to consider jointly neither performance measures nor multiple competitors at once. The aim of this paper is to resolve these issues by developing statistical procedures that are able to account for multiple competing measures at the same time and to compare multiple algorithms altogether. In particular, we develop two tests: a frequentist procedure based on the generalized likelihood-ratio test and a Bayesian procedure based on a multinomial-Dirichlet conjugate model. We further extend them by discovering conditional independences among measures to reduce the number of parameters of such models, as usually the number of studied cases is very reduced in such comparisons. Data from a comparison among general purpose classifiers is used to show a practical application of our tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En este trabajo se aborda la aplicación de SPEA2, un método para optimización multiobjetivo, al cálculo de un esquema de dosificación para el tratamiento quimioterapéutico de una masa tumoral; entiéndase por esquema de dosificación la especificación del o de los agentes cito-tóxicos, sus dosis y tiempos en que deben administrarse. El problema de optimización aquí resuelto es uno multiobjetivo, pues el esquema de dosificación a calcularse debe minimizar no solo el tamaño del tumor, sino también la toxicidad remanente al término del tratamiento, su costo, etc. El SPEA2 es un algoritmo genético que aplica el criterio de Pareto; por lo tanto, lo que calcula es una aproximación a la frontera de Pareto, soluciones de entre las cuales el usuario puede escoger la “mejor”. En el proceso de esta investigación se construyó SoT-Q, una herramienta de software que consiste de dos módulos principales: un optimizador para calcular los esquemas de dosificación óptimos, y un simulador para aplicar dichos esquemas a un paciente (simulado) con masa tumoral; el funcionamiento del simulador se basa en un modelo fármaco-dinámico que representa el tumor. El programa SoT-Q podría en el futuro -una vez extensamente probado y depurado- asistir a médicos oncólogos en la toma de decisiones respecto a tratamientos quimioterapéuticos; o podría servir también como ayuda pedagógica en el entrenamiento de nuevos profesionales de la salud. Los resultados obtenidos fueron muy buenos; en todos los casos de prueba utilizados se logró reducir de manera significativa tanto el tamaño del tumor como la toxicidad remanente al término del tratamiento; en algunos casos la reducción fue de tres órdenes de magnitud.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Part 18: Optimization in Collaborative Networks

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we consider a vector optimization problem where all functions involved are defined on Banach spaces. We obtain necessary and sufficient criteria for optimality in the form of Karush-Kuhn-Tucker conditions. We also introduce a nonsmooth dual problem and provide duality theorems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In decision making problems where we need to choose a particular decision or alternative from a set of possible choices, we often have some preferences which determine if we prefer one decision over another. When these preferences give us an ordering on the decisions that is complete, then it is easy to choose the best or one of the best decisions. However it often occurs that the preferences relation is partially ordered, and we have no best decision. In this thesis, we look at what happens when we have such a partial order over a set of decisions, in particular when we have multiple orderings on a set of decisions, and we present a framework for qualitative decision making. We look at the different natural notions of optimal decision that occur in this framework, which gives us different optimality classes, and we examine the relationships between these classes. We then look in particular at a qualitative preference relation called Sorted-Pareto Dominance, which is an extension of Pareto Dominance, and we give a semantics for this relation as one that is compatible with any order-preserving mapping of an ordinal preference scale to a numerical one. We apply Sorted-Pareto dominance to a Soft Constraints setting, where we solve problems in which the soft constraints associate qualitative preferences to decisions in a decision problem. We also examine the Sorted-Pareto dominance relation in the context of our qualitative decision making framework, looking at the relevant optimality classes for the Sorted-Pareto case, which gives us classes of decisions that are necessarily optimal, and optimal for some choice of mapping of an ordinal scale to a quantitative one. We provide some empirical analysis of Sorted-Pareto constraints problems and examine the optimality classes that result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the optimality of the Friedman rule in a two-sector small open economy. That policy prescription is found to be a necessary condition for Pareto efficiency. If a planner can select all conceivable distorting taxes, then, for some initial values of public debt, money balances and foreign assets, it is possible to decentralize a Pareto efficient allocation. If the planner can select only some of these tax rates, then second-best policies may also satisfy the Friedman rule. However, this last result depends on the set of tax instruments the planner can choose from.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study sample-based estimates of the expectation of the function produced by the empirical minimization algorithm. We investigate the extent to which one can estimate the rate of convergence of the empirical minimizer in a data dependent manner. We establish three main results. First, we provide an algorithm that upper bounds the expectation of the empirical minimizer in a completely data-dependent manner. This bound is based on a structural result due to Bartlett and Mendelson, which relates expectations to sample averages. Second, we show that these structural upper bounds can be loose, compared to previous bounds. In particular, we demonstrate a class for which the expectation of the empirical minimizer decreases as O(1/n) for sample size n, although the upper bound based on structural properties is Ω(1). Third, we show that this looseness of the bound is inevitable: we present an example that shows that a sharp bound cannot be universally recovered from empirical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance guarantees for online learning algorithms typically take the form of regret bounds, which express that the cumulative loss overhead compared to the best expert in hindsight is small. In the common case of large but structured expert sets we typically wish to keep the regret especially small compared to simple experts, at the cost of modest additional overhead compared to more complex others. We study which such regret trade-offs can be achieved, and how. We analyse regret w.r.t. each individual expert as a multi-objective criterion in the simple but fundamental case of absolute loss. We characterise the achievable and Pareto optimal trade-offs, and the corresponding optimal strategies for each sample size both exactly for each finite horizon and asymptotically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of ∼63°. We recently presented a model of the evolution of chemotactic swimming strategies in bacteria which is able to quantitatively reproduce the emergence of this correlation. The agreement between model and experiments suggests that directional persistence may serve some function, a hypothesis supported by the results of an earlier model. Here we investigate the effect of persistence on chemotactic efficiency, using a spatial Monte Carlo model of bacterial swimming in a gradient, combined with simulations of natural selection based on chemotactic efficiency. A direct search of the parameter space reveals two attractant gradient regimes, (a) a low-gradient regime, in which efficiency is unaffected by directional persistence and (b) a high-gradient regime, in which persistence can improve chemotactic efficiency. The value of the persistence parameter that maximises this effect corresponds very closely with the value observed experimentally. This result is matched by independent simulations of the evolution of directional memory in a population of model bacteria, which also predict the emergence of persistence in high-gradient conditions. The relationship between optimality and persistence in different environments may reflect a universal property of random-walk foraging algorithms, which must strike a compromise between two competing aims: exploration and exploitation. We also present a new graphical way to generally illustrate the evolution of a particular trait in a population, in terms of variations in an evolvable parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although live VM migration has been intensively studied, the problem of live migration of multiple interdependent VMs has hardly been investigated. The most important problem in the live migration of multiple interdependent VMs is how to schedule VM migrations as the schedule will directly affect the total migration time and the total downtime of those VMs. Aiming at minimizing both the total migration time and the total downtime simultaneously, this paper presents a Strength Pareto Evolutionary Algorithm 2 (SPEA2) for the multi-VM migration scheduling problem. The SPEA2 has been evaluated by experiments, and the experimental results show that the SPEA2 can generate a set of VM migration schedules with a shorter total migration time and a shorter total downtime than an existing genetic algorithm, namely Random Key Genetic Algorithm (RKGA). This paper also studies the scalability of the SPEA2.