879 resultados para Panel Data Model
Resumo:
This paper investigates whether obtaining sustainable building certification entails a rental premium for commercial office buildings and tracks its development over time. To this aim, both a difference-in-differences and a fixed-effects model approach are applied to a large panel dataset of office buildings in the United States in the 2000–2010 period. The results indicate a significant rental premium for both ENERGY STAR and LEED certified buildings. Controlling for confounding factors, this premium is shown to have increased steadily from 2006 to 2008, followed by a moderate decline in the subsequent periods. The results also show a significant positive relationship between ENERGY STAR labeling and building occupancy rates.
Resumo:
This paper investigates what factors affect the destination choice for Jordanian to 8 countries (Oman, Saudi Arabia, Syria, Tunisia, Yemen, Egypt, Lebanon and Bahrain) using panel data analysis. Number of outbound tourists is represented as dependent variable, which is regressed over five explanatory variables using fixed effect model. The finding of this paper is that tourists from Jordan have weak demand for outbound tourism; Jordanian decision of traveling abroad is determined by the cost of traveling to different places and choosing the cheapest alternative.
Resumo:
The aim of this article is to assess the role of real effective exchange rate volatility on long-run economic growth for a set of 82 advanced and emerging economies using a panel data set ranging from 1970 to 2009. With an accurate measure for exchange rate volatility, the results for the two-step system GMM panel growth models show that a more (less) volatile RER has significant negative (positive) impact on economic growth and the results are robust for different model specifications. In addition to that, exchange rate stability seems to be more important to foster long-run economic growth than exchange rate misalignment
Resumo:
The thesis at hand adds to the existing literature by investigating the relationship between economic growth and outward foreign direct investments (OFDI) on a set of 16 emerging countries. Two different econometric techniques are employed: a panel data regression analysis and a time-series causality analysis. Results from the regression analysis indicate a positive and significant correlation between OFDI and economic growth. Additionally, the coefficient for the OFDI variable is robust in the sense specified by the Extreme Bound Analysis (EBA). On the other hand, the findings of the causality analysis are particularly heterogeneous. The vector autoregression (VAR) and the vector error correction model (VECM) approaches identify unidirectional Granger causality running either from OFDI to GDP or from GDP to OFDI in six countries. In four economies causality among the two variables is bidirectional, whereas in five countries no causality relationship between OFDI and GDP seems to be present.
Resumo:
Housing is an important component of wealth for a typical household in many countries. The objective of this paper is to investigate the effect of real-estate price variation on welfare, trying to close a gap between the welfare literature in Brazil and that in the U.S., the U.K., and other developed countries. Our first motivation relates to the fact that real estate is probably more important here than elsewhere as a proportion of wealth, which potentially makes the impact of a price change bigger here. Our second motivation relates to the fact that real-estate prices boomed in Brazil in the last five years. Prime real estate in Rio de Janeiro and São Paulo have tripled in value in that period, and a smaller but generalized increase has been observed throughout the country. Third, we have also seen a recent consumption boom in Brazil in the last five years. Indeed, the recent rise of some of the poor to middle-income status is well documented not only for Brazil but for other emerging countries as well. Regarding consumption and real-estate prices in Brazil, one cannot imply causality from correlation, but one can do causal inference with an appropriate structural model and proper inference, or with a proper inference in a reduced-form setup. Our last motivation is related to the complete absence of studies of this kind in Brazil, which makes ours a pioneering study. We assemble a panel-data set for the determinants of non-durable consumption growth by Brazilian states, merging the techniques and ideas in Campbell and Cocco (2007) and in Case, Quigley and Shiller (2005). With appropriate controls, and panel-data methods, we investigate whether house-price variation has a positive effect on non-durable consumption. The results show a non-negligible significant impact of the change in the price of real estate on welfare consumption), although smaller then what Campbell and Cocco have found. Our findings support the view that the channel through which house prices affect consumption is a financial one.
Resumo:
This paper estimates the elasticity of substitution of an aggregate production function. The estimating equation is derived from the steady state of a neoclassical growth model. The data comes from the PWT in which different countries face different relative prices of the investment good and exhibit different investment-output ratios. Then, using this variation we estimate the elasticity of substitution. The novelty of our approach is that we use dynamic panel data techniques, which allow us to distinguish between the short and the long run elasticity and handle a host of econometric and substantive issues. In particular we accommodate the possibility that different countries have different total factor productivities and other country specific effects and that such effects are correlated with the regressors. We also accommodate the possibility that the regressors are correlated with the error terms and that shocks to regressors are manifested in future periods. Taking all this into account our estimation resuIts suggest that the Iong run eIasticity of substitution is 0.7, which is Iower than the eIasticity that had been used in previous macro-deveIopment exercises. We show that this lower eIasticity reinforces the power of the neoclassical mo deI to expIain income differences across countries as coming from differential distortions.
Resumo:
There are four different hypotheses analyzed in the literature that explain deunionization, namely: the decrease in the demand for union representation by the workers; the impaet of globalization over unionization rates; teehnieal ehange and ehanges in the legal and politieal systems against unions. This paper aims to test alI ofthem. We estimate a logistie regression using panel data proeedure with 35 industries from 1973 to 1999 and eonclude that the four hypotheses ean not be rejeeted by the data. We also use a varianee analysis deeomposition to study the impaet of these variables over the drop in unionization rates. In the model with no demographic variables the results show that these economic (tested) variables can account from 10% to 12% of the drop in unionization. However, when we include demographic variables these tested variables can account from 10% to 35% in the total variation of unionization rates. In this case the four hypotheses tested can explain up to 50% ofthe total drop in unionization rates explained by the model.
Resumo:
This paper investigates the role of consumption-wealth ratio on predicting future stock returns through a panel approach. We follow the theoretical framework proposed by Lettau and Ludvigson (2001), in which a model derived from a nonlinear consumer’s budget constraint is used to settle the link between consumption-wealth ratio and stock returns. Using G7’s quarterly aggregate and financial data ranging from the first quarter of 1981 to the first quarter of 2014, we set an unbalanced panel that we use for both estimating the parameters of the cointegrating residual from the shared trend among consumption, asset wealth and labor income, cay, and performing in and out-of-sample forecasting regressions. Due to the panel structure, we propose different methodologies of estimating cay and making forecasts from the one applied by Lettau and Ludvigson (2001). The results indicate that cay is in fact a strong and robust predictor of future stock return at intermediate and long horizons, but presents a poor performance on predicting one or two-quarter-ahead stock returns.
Resumo:
There is a consensus in China that industrialization, urbanization, globalization and information technology will enhance China's urban competitiveness. We have developed a methodology for the analysis of urban competitiveness that we have applied to China's 25 principal cities during three periods from 1990 through 2009. Our model uses data for 12 variables, to which we apply appropriate statistical techniques. We are able to examine the competitiveness of inland cities and those on the coast, how this has changed during the two decades of the study, the competitiveness of Mega Cities and of administrative centres, and the importance of each variable in explaining urban competitiveness and its development over time. This analysis will be of benefit to Chinese planners as they seek to enhance the competitiveness of China and its major cities in the future.
Resumo:
Understanding the determinants of tourism demand is crucial for the tourism sector. This paper develops a dynamic panel model to examine the determinants of inbound tourists to Siem Reap airport, Phnom Penh airport, and land and waterway borders in Cambodia. Consistent with the consumer theory of tourism consumption, a 10% increase in the origin country GDP per capita is predicted to increase the number of tourist visits to Siem Reap airport by 5.8%. A 10% increase in the real exchange rate between the origin country and Cambodia is predicted to decrease the number of tourist visits by 0.89%. In contrast, the number of foreign tourists in a previous period has little effect on the number of foreign tourists in the current period. Additionally, the determinants are different by the mode of entry to Cambodia.
Resumo:
In order to generate sales promotion response predictions, marketing analysts estimate demand models using either disaggregated (consumer-level) or aggregated (store-level) scanner data. Comparison of predictions from these demand models is complicated by the fact that models may accommodate different forms of consumer heterogeneity depending on the level of data aggregation. This study shows via simulation that demand models with various heterogeneity specifications do not produce more accurate sales response predictions than a homogeneous demand model applied to store-level data, with one major exception: a random coefficients model designed to capture within-store heterogeneity using store-level data produced significantly more accurate sales response predictions (as well as better fit) compared to other model specifications. An empirical application to the paper towel product category adds additional insights. This article has supplementary material online.
Resumo:
To investigate investment behaviour the present study applies panel data techniques, in particular the Arellano-Bond (1991) GMM estimator, based on data on Estonian manufacturing firms from the period 1995-1999. We employ the model of optimal capital accumulation in the presence of convex adjustment costs. The main research findings are that domestic companies seem to be financially more constrained than those where foreign investors are present, and also, smaller firms are more constrained than their larger counterparts.
Resumo:
Using panel data pertaining to large Polish (non-financial) firms this paper examines the determinants of employment change during the period 1996-2002. Paying particular attention to the asymmetry hypothesis we investigate the impact of own wages, outside wages, output growth, regional characteristics and sectoral affiliation on the evolution of employment. In keeping with the 'right to manage' model we find that employment dynamics are not affected negatively by alternative wages. Furthermore, in contrast to the early transition period, we find evidence that employment levels respond to positive sales growth (in all but state firms). The early literature, (e.g. Kollo, 1998) found that labour hoarding lowered employment elasticities in the presence of positive demand shocks. Our findings suggest that inherited labour hoarding may no longer be a factor. We argue that the present pattern of employment adjustment is better explained by the role of insiders. This tentative conclusion is hinged on the contrasting behaviour of state and privatised companies and the similar behaviour of privatised and new private companies. We conclude that lower responsiveness of employment to both positive and negative changes in revenue in state firms is consistent with the proposition that rent sharing by insiders is stronger in the state sector.
Resumo:
Due to the rapid changes that governs the Swedish financial sector such as financial deregulations and technological innovations, it is imperative to examine the extent to which the Swedish Financial institutions had performed amid these changes. For this to be accomplish, the work investigates what are the determinants of performance for Swedish Financial Monetary Institutions? Assumptions were derived from theoretical and empirical literatures to investigate the authenticity of this research question using seven explanatory variables. Two models were specified using Returns on Asset (ROA) and Return on Equity (ROE) as the main performance indicators and for the sake of reliability and validity, three different estimators such as Ordinary Least Square (OLS), Generalized Least Square (GLS) and Feasible Generalized Least Square (FGLS) were employed. The Akaike Information Criterion (AIC) was also used to verify which specification explains performance better while performing robustness check of parameter estimates was done by correcting for standard errors. Based on the findings, ROA specification proves to have the lowest Akaike Information Criterion (AIC) and Standard errors compared to ROE specification. Under ROA, two variables; the profit margins and the Interest coverage ratio proves to be statistically significant while under ROE just the interest coverage ratio (ICR) for all the estimators proves significant. The result also shows that the FGLS is the most efficient estimator, then follows the GLS and the last OLS. when corrected for SE robust, the gearing ratio which measures the capital structure becomes significant under ROA and its estimate become positive under ROE robust. Conclusions were drawn that, within the period of study three variables (ICR, profit margins and gearing) shows significant and four variables were insignificant. The overall findings show that the institutions strive to their best to maximize returns but these returns were just normal to cover their costs of operation. Much should be done as per the ASC theory to avoid liquidity and credit risks problems. Again, estimated values of ICR and profit margins shows that a considerable amount of efforts with sound financial policies are required to increase performance by one percentage point. Areas of further research could be how the individual stochastic factors such as the Dupont model, repo rates, inflation, GDP etc. can influence performance.
Resumo:
Companies are increasingly more and more dependent on distributed web-based software systems to support their businesses. This increases the need to maintain and extend software systems with up-to-date new features. Thus, the development process to introduce new features usually needs to be swift and agile, and the supporting software evolution process needs to be safe, fast, and efficient. However, this is usually a difficult and challenging task for a developer due to the lack of support offered by programming environments, frameworks, and database management systems. Changes needed at the code level, database model, and the actual data contained in the database must be planned and developed together and executed in a synchronized way. Even under a careful development discipline, the impact of changing an application data model is hard to predict. The lifetime of an application comprises changes and updates designed and tested using data, which is usually far from the real, production, data. So, coding DDL and DML SQL scripts to update database schema and data, is the usual (and hard) approach taken by developers. Such manual approach is error prone and disconnected from the real data in production, because developers may not know the exact impact of their changes. This work aims to improve the maintenance process in the context of Agile Platform by Outsystems. Our goal is to design and implement new data-model evolution features that ensure a safe support for change and a sound migration process. Our solution includes impact analysis mechanisms targeting the data model and the data itself. This provides, to developers, a safe, simple, and guided evolution process.