981 resultados para Paley-Wiener-Schawrtz Theorems
Resumo:
We obtain stringent bounds in the < r(2)>(K pi)(S)-c plane where these are the scalar radius and the curvature parameters of the scalar K pi form factor, respectively, using analyticity and dispersion relation constraints, the knowledge of the form factor from the well-known Callan-Treiman point m(K)(2)-m(pi)(2), as well as at m(pi)(2)-m(K)(2), which we call the second Callan-Treiman point. The central values of these parameters from a recent determination are accomodated in the allowed region provided the higher loop corrections to the value of th form factor at the second Callan-Treiman point reduce the one-loop result by about 3% with F-K/F-pi = 1.21. Such a variation in magnitude at the second Callan-Treiman point yields 0.12 fm(2) less than or similar to < r(2)>(K pi)(S) less than or similar to 0.21 fm(2) and 0.56 GeV-4 less than or similar to c less than or similar to 1.47 GeV-4 and a strong correlation between them. A smaller value of F-K/F-pi shifts both bounds to lower values.
Resumo:
Using elementary comparison geometry, we prove: Let (M, g) be a simply-connected complete Riemannian manifold of dimension >= 3. Suppose that the sectional curvature K satisfies -1-s(r) <= K <= -1, where r denotes distance to a fixed point in M. If lim(r ->infinity) e(2r) s(r) = 0, then (M, g) has to be isometric to H-n.The same proof also yields that if K satisfies -s(r) <= K <= 0 where lim(r ->infinity) r(2) s(r) = 0, then (M, g) is isometric to R-n, a result due to Greene and Wu.Our second result is a local one: Let (M, g) be any Riemannian manifold. For a E R, if K < a on a geodesic ball Bp (R) in M and K = a on partial derivative B-p (R), then K = a on B-p (R).
Resumo:
Mrs. Monasch is shown as a young woman wearing a gray translucent shawl and a lace bonnet with ornate flaps coming down over the ears. Some of her black hair is showing. She is shown in a 3/4 view; the eyes are lustrous, the corners of the mouth are raised in a half smile. On backing of original frame: "Zum Andencken von Ihren Schwiegersohn, J. Wollstein d. 20th February 1839" (In memory of your son-in-law J. Wollstein Feb 20th, 1839).
Resumo:
Second version of a stage play about life in Vienna around the time of the Turkish siege of Vienna, 1683.
Resumo:
Manuscripts and articles by Rabbi Dr. Jacob G. Wiener about Jewish communities in Germany.
Resumo:
We investigate the scalar K pi form factor at low energies by the method of unitarity bounds adapted so as to include information on the phase and modulus along the elastic region of the unitarity cut. Using at input the values of the form factor at t = 0 and the Callan-Treiman point, we obtain stringent constraints on the slope and curvature parameters of the Taylor expansion at the origin. Also, we predict a quite narrow range for the higher-order ChPT corrections at the second Callan-Treiman point.
Resumo:
We consider convolution equations of the type f * T = g, where f, g is an element of L-P (R-n) and T is a compactly supported distribution. Under natural assumptions on the zero set of the Fourier transform of T, we show that f is compactly supported, provided g is. Similar results are proved for non-compact symmetric spaces as well. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this paper we obtain existence theorems for generalized Hammerstein-type equations K(u)Nu + u = 0, where for each u in the dual X* of a real reflexive Banach space X, K(u): X -- X* is a bounded linear map and N: X* - X is any map (possibly nonlinear). The method we adopt is totally different from the methods adopted so far in solving these equations. Our results in the reflexive spacegeneralize corresponding results of Petry and Schillings.
Resumo:
Various Tb theorems play a key role in the modern harmonic analysis. They provide characterizations for the boundedness of Calderón-Zygmund type singular integral operators. The general philosophy is that to conclude the boundedness of an operator T on some function space, one needs only to test it on some suitable function b. The main object of this dissertation is to prove very general Tb theorems. The dissertation consists of four research articles and an introductory part. The framework is general with respect to the domain (a metric space), the measure (an upper doubling measure) and the range (a UMD Banach space). Moreover, the used testing conditions are weak. In the first article a (global) Tb theorem on non-homogeneous metric spaces is proved. One of the main technical components is the construction of a randomization procedure for the metric dyadic cubes. The difficulty lies in the fact that metric spaces do not, in general, have a translation group. Also, the measures considered are more general than in the existing literature. This generality is genuinely important for some applications, including the result of Volberg and Wick concerning the characterization of measures for which the analytic Besov-Sobolev space embeds continuously into the space of square integrable functions. In the second article a vector-valued extension of the main result of the first article is considered. This theorem is a new contribution to the vector-valued literature, since previously such general domains and measures were not allowed. The third article deals with local Tb theorems both in the homogeneous and non-homogeneous situations. A modified version of the general non-homogeneous proof technique of Nazarov, Treil and Volberg is extended to cover the case of upper doubling measures. This technique is also used in the homogeneous setting to prove local Tb theorems with weak testing conditions introduced by Auscher, Hofmann, Muscalu, Tao and Thiele. This gives a completely new and direct proof of such results utilizing the full force of non-homogeneous analysis. The final article has to do with sharp weighted theory for maximal truncations of Calderón-Zygmund operators. This includes a reduction to certain Sawyer-type testing conditions, which are in the spirit of Tb theorems and thus of the dissertation. The article extends the sharp bounds previously known only for untruncated operators, and also proves sharp weak type results, which are new even for untruncated operators. New techniques are introduced to overcome the difficulties introduced by the non-linearity of maximal truncations.
Resumo:
We re-examine holographic versions of the c-theorem and entanglement entropy in the context of higher curvature gravity and the AdS/CFT correspondence. We select the gravity theories by tuning the gravitational couplings to eliminate non-unitary operators in the boundary theory and demonstrate that all of these theories obey a holographic c-theorem. In cases where the dual CFT is even-dimensional, we show that the quantity that flow is the central charge associated with the A-type trace anomaly. Here, unlike in conventional holographic constructions with Einstein gravity, we are able to distinguish this quantity from other central charges or the leading coefficient in the entropy density of a thermal bath. In general, we are also able to identify this quantity with the coefficient of a universal contribution to the entanglement entropy in a particular construction. Our results suggest that these coefficients appearing in entanglement entropy play the role of central charges in odd-dimensional CFT's. We conjecture a new c-theorem on the space of odd-dimensional field theories, which extends Cardy's proposal for even dimensions. Beyond holography, we were able to show that for any even-dimensional CFT, the universal coefficient appearing the entanglement entropy which we calculate is precisely the A-type central charge.
Resumo:
Two mixed boundary value problems associated with two-dimensional Laplace equation, arising in the study of scattering of surface waves in deep water (or interface waves in two superposed fluids) in the linearised set up, by discontinuities in the surface (or interface) boundary conditions, are handled for solution by the aid of the Weiner-Hopf technique applied to a slightly more general differential equation to be solved under general boundary conditions and passing on to the limit in a manner so as to finally give rise to the solutions of the original problems. The first problem involves one discontinuity while the second problem involves two discontinuities. The reflection coefficient is obtained in closed form for the first problem and approximately for the second. The behaviour of the reflection coefficient for both the problems involving deep water against the incident wave number is depicted in a number of figures. It is observed that while the reflection coefficient for the first problem steadily increases with the wave number, that for the second problem exhibits oscillatory behaviour and vanishes at some discrete values of the wave number. Thus, there exist incident wave numbers for which total transmission takes place for the second problem. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We formulate a two-stage Iterative Wiener filtering (IWF) approach to speech enhancement, bettering the performance of constrained IWF, reported in literature. The codebook constrained IWF (CCIWF) has been shown to be effective in achieving convergence of IWF in the presence of both stationary and non-stationary noise. To this, we include a second stage of unconstrained IWF and show that the speech enhancement performance can be improved in terms of average segmental SNR (SSNR), Itakura-Saito (IS) distance and Linear Prediction Coefficients (LPC) parameter coincidence. We also explore the tradeoff between the number of CCIWF iterations and the second stage IWF iterations.