40 resultados para PYY


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Severity of left ventricular hypertrophy (LVH) correlates with elevated plasma levels of neuropeptide Y (NPY) in hypertension. NPY elicits positive and negative contractile effects in cardiomyocytes through Y(1) and Y(2) receptors, respectively. This study tested the hypothesis that NPY receptor-mediated contraction is altered during progression of LVH. Ventricular cardiomyocytes were isolated from spontaneously hypertensive rats (SHRs) pre-LVH (12 weeks), during development (16 weeks), and at established LVH (20 weeks) and age-matched normotensive Wistar Kyoto (WKY) rats. Electrically stimulated (60 V, 0.5 Hz) cell shortening was measured using edge detection and receptor expression determined at mRNA and protein level. The NPY and Y(1) receptor-selective agonist, Leu(31)Pro(34)NPY, stimulated increases in contractile amplitude, which were abolished by the Y(1) receptor-selective antagonist, BIBP3226 [R-N(2)-(diphenyl-acetyl)-N-(4-hydroxyphenyl)methyl-argininamide)], confirming Y(1) receptor involvement. Potencies of both agonists were enhanced in SHR cardiomyocytes at 20 weeks (2300- and 380-fold versus controls). Maximal responses were not attenuated. BIBP3226 unmasked a negative contraction effect of NPY, elicited over the concentration range (10(-12) to 3 x 10(-9) M) in which NPY and PYY(3-36) attenuated the positive contraction effects of isoproterenol, the potencies of which were increased in cardiomyocytes from SHRs at 20 weeks (175- and 145-fold versus controls); maximal responses were not altered. Expression of NPY-Y(1) and NPY-Y(2) receptor mRNAs was decreased (55 and 69%) in left ventricular cardiomyocytes from 20-week-old SHRs versus age-matched WKY rats; parallel decreases (32 and 80%) were observed at protein level. Enhancement of NPY potency, producing (opposing) contractile effects on cardiomyocytes together with unchanged maximal response despite reduced receptor number, enables NPY to contribute to regulating cardiac performance during compensatory LVH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localisation and distribution of 5-hydroxytryptamine (5-HT, or serotonin) and neuropeptides in the nervous system of the protoscolex of the hydatid organism Echinococcus granulosus were determined by an indirect immunofluorescence technique. Nerve-cell bodies immunoreactive for 5-HT occurred in the lateral ganglia and in association with the lateral longitudinal nerve cords. 5-HT immunostaining was also evident in the central nerve ring, in the rostellar nerves and in the nerve plexus innervating the suckers. Of the antisera used to screen the protoscolex for neuropeptide immunoreactivity (IR), immunostaining was obtained with those raised against pancreatic polypeptide (PP), peptide YY (PYY), substance P (SP), peptide histidine isoleucine (PI-II) and vasoactive intestinal peptide (VIP). The most extensive pattern of IR occurred with antisera to PP and PYY. Immunoreactive nerve elements were evident in the lateral ganglia, central nerve ring, rostellar nerves, rostellar ganglia, sucker plexus and longitudinal nerve cords. The distribution of SP-, PHI- and VIP-IRs was more restricted: SP-IR occurred in the lateral ganglia and sucker nerves, whilst PHI- and VIP-immunoreactive nerve elements were associated with the lateral longitudinal nerve cords. Protoscoleces cultured in vitro for 29 days were also examined and neuroanatomical changes noted. A greater development of the longitudinal nerve cords and their cross-connectives in the body of the worm was evident, and a group of nerve cells were seen to develop at the posterior end of the main lateral nerve cords.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization and distribution of neuropeptides and an indoleamine (serotonin or 5-hydroxytryptamine) in the enteric nervous system (ENS) of the pig roundworm, Ascaris suum, have been determined by the application of an indirect immunofluorescence technique in conjunction with confocal scanning laser microscopy. Whole-mount preparations of pharyngeal, intestinal and rectal regions were screened with antisera to 23 vertebrate peptides, 2 invertebrate peptides and serotonin(= 5-HT). Positive immunoreactivity (IR) was obtained with antisera to pancreatic polypeptide (PP), peptide YY (PYY), FMRFamide, gastrin and serotonin. The only IR observed in the ENS was that evident in the nerve supply to the pharynx and rectal region; no IR was associated with any region of the intestine. The most extensive patterns of IR occurred with antisera to PW, FMRFamide and serotonin. In the pharyngeal component of the ENS, IR was evident in the lateral and dorsal longitudinal pharyngeal nerves, pharyngeal commissures, nerve plexus, and associated nerve cells and fibres. In contrast, the distribution of IR to the PP and gastrin antisera was more restricted and displayed a lower intensity of immunostaining. The other component of the ENS, the rectal enteric system, only yielded immunostaining to FMRFamide. The possible role of neuropeptides and serotonin in the nutritional biology of nematodes is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localisation and distribution of neuropeptides in the peripheral nervous system of the pig roundworm Ascaris suum have been determined by an indirect immunofluorescence technique in conjunction with confocal microscopy. Of the 31 antisera tested, immunostaining was obtained only with antisera to peptide YY (PYY), pancreatic polypeptide (PP) and FMRFamide. Immunostaining for PYY and FMRFamide was evident in the amphidial and papillary ganglia associated with the anterior nerve ring and in the nerves from these ganglia that terminated in sensory receptors within the buccal lips of the parasite. The only peptide immunoreactivity (IR) observed in the reproductive system of either sex was that evident in the nerve supply to the distal region of the vagina in the female worm. It took the form of a well-developed plexus of parallel nerve fibres, cross-connectives and looped commissures. The nerve net diminished in the more proximal region of the vagina. PP-IR was less intense than that for PYY and FMRFamide and was more restricted in distribution, being confined to a small number of nerve fibres in the nerve supply to the vagina; it did not occur in the nerves supplying the anterior sensory receptors. The possible roles of neuropeptides in the sensory and reproductive biology of nematodes are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization and distribution of neuropeptides in the central nervous system of the pig roundworm, Ascaris suum, have been determined by an indirect immunofluorescence technique in conjunction with confocal microscopy. Antisera to 25 vertebrate peptides and two invertebrate peptides were used to screen the worm for immunoreactivity (IR). Immunostaining was obtained with antisera to pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), gastrin, cholecystokinin (CCK), substance P (SP), atrial natriuretic peptide (ANP), salmon gonadotropin-releasing hormone (SGnRH), mammalian gonadotropin-releasing hormone (MGnRH), chromogranin A (CGA) and FMRFamide. The most extensive patterns of IR occurred with antisera to PYY, FMRFamide and gastrin. IR was evident in nerve cells and fibres in the ganglia associated with the anterior nerve ring and in the main nerve cords and their commissures; IR to FMRFamide also occurred in the posterior nerve ring. Immunostaining for the other peptides was confined to the nerve cords, with the number of immunoreactive nerve fibres varying from peptide to peptide.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard indirect immunocytochemical techniques have been interfaced with confocal scanning laser microscopy (for whole-mount preparations) and epifluorescence microscopy (for cryosections) to investigate the occurrence and distribution of serotoninergic and peptidergic nerve elements in adult H. diminuta. Serotonin (5-HT)-immunoreactivity (IR) was widespread throughout the worm, occurring in the paired cerebral ganglia, transverse commissure, the 10 longitudinal nerve cords and in a plethora of small nerve fibres of the peripheral nervous system. An abundance of serotoninergic nerve cell bodies was found in association with the lateral nerve cords. The genital atrium and accessory reproductive ducts were richly innervated with serotoninergic nerve fibres. Thirty-five antisera to 20 vertebrate regulatory peptides and 1 invertebrate peptide (FMRFamide) were used to screen the worm for neuropeptide IR. Immunostaining was obtained with antisera raised to pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP), peptide histidine isoleucine (PHI), xenopsin (XP) and FMRFamide. The most extensive pattern of IR occurred with antisera to PP and PYY, IR being evident in the cerebral ganglia, transverse commissure, longitudinal nerve cords and in small nerve fibres that ramified throughout the parenchyma. A series of bipolar nerve cell bodies between the median nerve cords displayed PP/PYY-IR. The distribution of FMRFamide-IR was reminiscent of the PP/PYY pattern but was less extensive. Comparison of the serotoninergic and peptidergic nervous systems has revealed general similarities and some distinct differences, especially with regard to the distribution of immunoreactive nerve cell bodies. Quantitative data are presented on the levels of PP-, SP-, PHI-, and gastrin-releasing peptide (GRP)-immunoreactivities demonstrable in acid-alcohol extracts of whole worms. The highest level of peptide IR determined was recorded for PP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Standard enzyme cytochemical and indirect immunocytochemical techniques have been used in conjunction with light and confocal scanning laser microscopy (CSLM) to visualize cholinergic, serotoninergic and peptidergic nerve elements in whole-mount preparations of the amphibian urinary-bladder fluke, Gorgoderina vitelliloba. Cholinesterase (ChE) activity was localized in paired anterior ganglia, a connecting dorsal commissure and in the origins of the ventral nerve cords. Cholinergic ganglia were also evident in shelled embryos in the uterus. Serotonin-immunoreactivity (IR) was more extensive than ChE activity and was identified in both the central and peripheral nervous systems. Serotoninergic nerve fibres were associated with the somatic musculature and female reproductive ducts. Antisera to nine mammalian peptides and one invertebrate (FMRFamide) peptide have been used to investigate the peptidergic nervous system in the parasite. Immunoreactivity was obtained to five peptides, namely pancreatic polypeptide (PP), peptide YY (PYY), neuropeptide Y (NPY), substance P (SP) and FMRFamide. Peptidergic nerve fibres were found to be more abundant than demonstrable cholinergic or serotoninergic nerve fibres. NPY-IR was identified only in the main components of the central nervous system. However, PP- and PYY-IR occurred in the anterior ganglia, dorsal commissure, main nerve cords and in numerous small varicose fibres that ramified throughout the worm. Additionally, PP-immunoreactive nerve fibres were found to innervate the musculature of the female reproductive tracts. Six sites of IR were found in the acetabulum, using antisera directed towards the C-terminal end of PP and PYY, and these matched with the distribution of six non-ciliated rosette-like papillae observed by scanning electron microscopy. SP- and FMRFamide-IR were identified in the CNS, and FMRFamide-immunopositive nerve fibres were also evident in association with the gonopore/cirrus region and with the terminal excretory pore. Results are discussed with respect to possible roles for each of the neurochemical types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy, whole-mount preparations of three genera of marine trematode larvae, Cryntocotyle lingua, Cercaria emasculans and Himasthla leptosoma, were screened for 5-hydroxytryptamine (5-HT) and selected neuropeptide immunoreactivities (IRs). IRs for pancreatic polypeptide (PP), peptide YY (PYY) and FMRFamide were found in the central nervous systems of the three species of cercariae, immunostaining the paired ganglia and central commissure and the longitudinal nerve cords, with slight differences in both distribution and intensity of IRs being observed for the different antisera used. PP, PYY and FMRFamide IRs were evident in both central and peripheral components of the nervous system in the rediae of C. lingua. 5-HT IR was confined to the peripheral nervous systems of the cercariae of C. emasculans and the rediae of C. lingua, appearing in the form of a network of immunoreactive fibres and associated large cell bodies. A moderate substance P IR was observed in the nervous system of the cercariae of C. lingua. The patterns of immunostaining described were compared with those obtained using antiserum directed to the C-terminal decapeptide amide of neuropeptide F (NPF), a native parasitic peptide from the cestode Moniezia expansa. Results demonstrated that serotoninergic and peptidergic components were present in the nervous systems of all of the trematode larvae studied and that some, if not all, of the IR for PP. PYY and FMRFamide was due to the presence of a trematode NPF homologue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The localization and distribution of cholinergic, serotoninergic and peptidergic nerve elements in the proteocephalidean tapeworm, Proteocephalus pollanicola, have been investigated by enzyme histochemistry, and by an indirect immunofluorescence technique interfaced with confocal scanning laser microscopy. Cholinesterase (ChE) activity was localized in the major components of the central nervous system (CNS) and the peripheral nervous system (PNS), including the innervation of the reproductive structures of the worm. Serotoninergic (5-HT) nerves were found in the paired cerebral ganglia, transverse commissure and in the 10 longitudinal nerve cords. Antisera to 17 mammalian regulatory peptides and the invertebrate peptide FMRFamide have been used to explore the peptidergic nervous system of the worm. The most extensive immunostaining occurred with antisera raised to members of the neuropeptide Y superfamily, namely neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). In all cases, intense immunoreactivity was found in numerous cell bodies and fibres of both the CNS and PNS, including the innervation of the reproductive apparatus. FMRFamide antisera stained the same structures to a comparable degree as those raised to the NPY superfamily. Cholinergic and peptidergic elements were much more prevalent within the CNS, while the serotoninergic nerve fibres tended to dominate in the PNS. The overlap obtained in staining patterns for the peptidergic and cholinergic components suggests that there may be a certain amount of co-localization of peptides with small-molecule transmitter substances in the same neurone. Weak staining for the tachykinin, substance P and for calcitonin gene-related peptide(CGRP) was confined to the major longitudinal nerve cords.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gastrointestinal hormones such as cholecystokinin (CCK), glucagon like peptide 1 (GLP-1), and peptide YY (PYY) play an important role in suppressing hunger and controlling food intake. These satiety hormones are secreted from enteroendocrine cells present throughout the intestinal tract. The intestinal secretin tumor cell line (STC-1) possesses many features of native intestinal enteroendocrine cells. As such, STC-1 cells are routinely used in screening platforms to identify foods or compounds that modulate secretion of gastrointestinal hormones in vitro. This chapter describes this intestinal cell model focussing on it’s applications, advantages and limitations. A general protocol is provided for challenging STC-1 cells with test compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To investigate the effect of nutrient stimulation of gut hormones by oligofructose supplementation on appetite, energy intake (EI), body weight (BW) and adiposity in overweight and obese volunteers. Methods: In a parallel, single-blind and placebo-controlled study, 22 healthy overweight and obese volunteers were randomly allocated to receive 30 g day−1 oligofructose or cellulose for 6 weeks following a 2-week run-in. Subjective appetite and side effect scores, breath hydrogen, serum short chain fatty acids (SCFAs), plasma gut hormones, glucose and insulin concentrations, EI, BW and adiposity were quantified at baseline and post-supplementation. Results: Oligofructose increased breath hydrogen (P < 0.0001), late acetate concentrations (P = 0.024), tended to increase total area under the curve (tAUC)420mins peptide YY (PYY) (P = 0.056) and reduced tAUC450mins hunger (P = 0.034) and motivation to eat (P = 0.013) when compared with cellulose. However, there was no significant difference between the groups in other parameters although within group analyses showed an increase in glucagon-like peptide 1 (GLP-1) (P = 0.006) in the cellulose group and a decrease in EI during ad libitum meal in both groups. Conclusions: Oligofructose increased plasma PYY concentrations and suppressed appetite, while cellulose increased GLP-1 concentrations. EI decreased in both groups. However, these positive effects did not translate into changes in BW or adiposity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The colonic microbiota ferment dietary fibres, producing short chain fatty acids. Recent evidence suggests that the short chain fatty acid propionate may play an important role in appetite regulation. We hypothesised that colonic delivery of propionate would increase peptide YY (PYY) and glucagon like peptide-1 (GLP-1) secretion in humans, and reduce energy intake and weight gain in overweight adults. DESIGN: To investigate whether propionate promotes PYY and GLP-1 secretion, a primary cultured human colonic cell model was developed. To deliver propionate specifically to the colon, we developed a novel inulin-propionate ester. An acute randomised, controlled cross-over study was used to assess the effects of this inulin-propionate ester on energy intake and plasma PYY and GLP-1 concentrations. The long-term effects of inulin-propionate ester on weight gain were subsequently assessed in a randomised, controlled 24-week study involving 60 overweight adults. RESULTS: Propionate significantly stimulated the release of PYY and GLP-1 from human colonic cells. Acute ingestion of 10 g inulin-propionate ester significantly increased postprandial plasma PYY and GLP-1 and reduced energy intake. Over 24 weeks, 10 g/day inulin-propionate ester supplementation significantly reduced weight gain, intra-abdominal adipose tissue distribution, intrahepatocellular lipid content and prevented the deterioration in insulin sensitivity observed in the inulin-control group. CONCLUSIONS: These data demonstrate for the first time that increasing colonic propionate prevents weight gain in overweight adult humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En lien avec l’augmentation constante de l’obésité, de plus en plus de personnes sont atteintes de résistance à l’insuline ou de diabète de type 2. Ce projet doctoral s’est surtout intéressé à l’une des conséquences majeures des pathologies cardiométaboliques, soit la dyslipidémie diabétique. À cet égard, les gens présentant une résistance à l’insuline ou un diabète de type 2 sont plus à risque de développer des perturbations lipidiques caractérisées essentiellement par des taux élevés de triglycérides et de LDL-cholestérol ainsi que de concentrations restreintes en HDL-cholestérol dans la circulation. Les risques de maladies cardiovasculaires sont ainsi plus élevés chez ces patients. Classiquement, trois organes sont connus pour développer l’insulino-résistance : le muscle, le tissu adipeux et le foie. Néanmoins, certaines évidences scientifiques commencent également à pointer du doigt l’intestin, un organe critique dans la régulation du métabolisme des lipides postprandiaux, et qui pourrait, conséquemment, avoir un impact important dans l’apparition de la dyslipidémie diabétique. De façon très intéressante, des peptides produits par l’intestin, notamment le GLP-1 (glucagon-like peptide-1), ont déjà démontré leur potentiel thérapeutique quant à l’amélioration du statut diabétique et leur rôle dans le métabolisme intestinal lipoprotéinique. Une autre évidence est apportée par la chirurgie bariatrique qui a un effet positif, durable et radical sur la perte pondérale, le contrôle métabolique et la réduction des comorbidités du diabète de type 2, suite à la dérivation bilio-intestinale. Les objectifs centraux du présent programme scientifique consistent donc à déterminer le rôle de l’intestin dans (i) l’homéostasie lipidique/lipoprotéinique en réponse à des concentrations élevées de glucose (à l’instar du diabète) et à des peptides gastro-intestinaux tels que le PYY (peptide YY); (ii) la coordination du métabolisme en disposant de l’AMPK (AMP-activated protein kinase) comme senseur incontournable permettant l’ajustement précis des besoins et disponibilités énergétiques cellulaires; et (iii) l’ajustement de sa capacité d’absorption des graisses alimentaires en fonction du gain ou de la perte de sa sensibilité à l’insuline démontrée dans les spécimens intestinaux humains prélevés durant la chirurgie bariatrique. Dans le but de confirmer le rôle de l’intestin dans la dyslipidémie diabétique, nous avons tout d’abord utilisé le modèle cellulaire intestinal Caco-2/15. Ces cellules ont permis de démontrer qu’en présence de hautes concentrations de glucose en basolatéral, telle qu’en condition diabétique, l’intestin absorbe davantage de cholestérol provenant de la lumière intestinale par l’intermédiaire du transporteur NPC1L1 (Niemann Pick C1-like 1). L’utilisation de l’ezetimibe, un inhibiteur du NPC1L1, a permis de contrecarrer cette augmentation de l’expression de NPC1L1 tout comme l’élévation de l’absorption du cholestérol, prouvant ainsi que le NPC1L1 est bel et bien responsable de cet effet. D’autre part, des travaux antérieurs avaient identifié certains indices quant à un rôle potentiel du peptide intestinal PYY au niveau du métabolisme des lipides intestinaux. Toutefois, aucune étude n’avait encore traité cet aspect systématiquement. Pour établir définitivement l’aptitude du PYY à moduler le transport et le métabolisme lipidique dans l’intestin, nous avons utilisé les cellules Caco-2/15. Notre étude a permis de constater que le PYY incubé du côté apical est capable de réduire significativement l’absorption du cholestérol et le transporteur NPC1L1. Puisque le rôle de l'AMPK dans l'intestin demeure inexploré, il est important non seulement de définir sa structure moléculaire, sa régulation et sa fonction dans le métabolisme des lipides, mais aussi d'examiner l'impact de l’insulino-résistance et du diabète de type 2 (DT2) sur son statut et son mode d’action gastro-intestinal. En employant les cellules Caco-2/15, nous avons été capables de montrer (i) la présence de toutes les sous-unités AMPK (α1/α2/β1/β2/γ1/γ2/γ3) avec une différence marquée dans leur abondance et une prédominance de l’AMPKα1 et la prévalence de l’hétérotrimère α1/β2/γ1; (ii) l’activation de l’AMPK par la metformine et l’AICAR, résultant ainsi en une phosphorylation accrue de l’enzyme acétylCoA carboxylase (ACC) et sans influence sur l'HMG-CoA réductase; (iii) la modulation négative de l’AMPK par le composé C et des concentrations de glucose élevées avec des répercussions sur la phosphorylation de l’ACC. D’autre part, l’administration de metformine au Psammomys obesus, un modèle animal de diabète et de syndrome métabolique, a conduit à (i) une régulation positive de l’AMPK intestinale (phosphorylation de l’AMPKα-Thr172); (ii) la réduction de l'activité ACC; (iii) l’augmentation de l’expression génique et protéique de CPT1, supportant une stimulation de la β-oxydation; (iv) une tendance à la hausse de la sensibilité à l'insuline représentée par l’induction de la phosphorylation d'Akt et l’inactivation de la phosphorylation de p38; et (v) l’abaissement de la formation des chylomicrons ce qui conduit à la diminution de la dyslipidémie diabétique. Ces données suggèrent que l'AMPK remplit des fonctions clés dans les processus métaboliques de l'intestin grêle. La preuve flagrante de l’implication de l’intestin dans les événements cardiométaboliques a été obtenue par l’examen des spécimens intestinaux obtenus de sujets obèses, suite à une chirurgie bariatrique. L’exploration intestinale nous a permis de constater chez ceux avec un indice HOMA élevé (marqueur d’insulinorésistance) (i) des défauts de signalisation de l'insuline comme en témoigne la phosphorylation réduite d'Akt et la phosphorylation élevée de p38 MAPK; (ii) la présence du stress oxydatif et de marqueurs de l'inflammation; (iii) la stimulation de la lipogenèse et de la production des lipoprotéines riches en triglycérides avec l’implication des protéines clés FABP, MTP et apo B-48. En conclusion, l'intestin grêle peut être classé comme un tissu insulino-sensible et répondant à plusieurs stimuli nutritionnels et hormonaux. Son dérèglement peut être déclenché par le stress oxydatif et l'inflammation, ce qui conduit à l'amplification de la lipogenèse et la synthèse des lipoprotéines, contribuant ainsi à la dyslipidémie athérogène chez les patients atteints du syndrome métabolique et de diabète de type 2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The capacity for glucose, propionate or hormones of splanchnic origin to influence appetite by directly regulating the expression of neuropeptides in the feeding centres of the hypothalamus of the ruminant is not described. Therefore, our objective was to measure the direct effect of metabolites (glucose and propionate) or hormones [insulin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1) and polypeptide YY (PYY)] on hypothalamic mRNA concentrations for neuropeptide Y (NPY), agouti-related peptide (AgRP) and proopiomelanocortin (POMC) following in vitro incubation. Hypothalamic tissue from 4- to 5-month-old lambs was obtained at slaughter and immediately incubated in culture media for 2 h at 36 °C. Treatments included a control Dulbecco’s modified Eagle medium (DMEM) containing 1 mm glucose or DMEM with the following additions: 10 mm glucose, 1 mm propionate, 1 nm insulin, 120 pm GLP-1, 100 pm PYY, 80 pm CCK or 10 mm glucose plus 1 nm insulin. The abundance of mRNA for NPY, AgRP and POMC was measured using quantitative reverse transcriptase PCR. Fisher’s protected LSD test was used to compare changes in relative mRNA concentrations for the hypothalamus incubated in the control media vs. the rest of the treatments. The media containing glucose plus insulin increased POMC mRNA concentration (p < 0.05), but did not affect NPY or AgRP mRNA concentration. There were no effects observed for the other treatments (p > 0.20). Results of the present study are consistent with the concept that effects of propionate on feed intake in ruminants is not mediated through direct effects on the hypothalamus, and that insulin is required for an effect of glucose on hypothalamic POMC expression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to compare the effects of the mixture of Lactobacillus delbrueckii subsp. rhamnosus strain GG, Bifidobacterium lactis Bb12, and inulin on intestinal populations of lactobacilli, bifidobacteria, and enterobacteria in adult and elderly rats fed the same (in quality and quantity) diet. The portal plasma levels of two neuropeptides, neuropeptide Y (NPY) and peptide YY (PYY), were also evaluated to assess the physiological consequences of the synbiotic treatment for the gastrointestinal (GI) tracts of rats of different ages. Adult (n = 24) and elderly (n = 24) male rats were fed the AIN-93 M maintenance diet. After 2 weeks of adaptation, the diet of 12 rats of each age group was supplemented with 8% inulin and with strains GG and Bb12 to provide 2.2 x 10(9) CFU of each strain g(-1) of the diet. Blood and different regions of the GI tract were sampled from all rats after 21 days of the treatment. Treatment with the mixture of strain GG, strain BB12, and inulin induced significantly different changes in the numbers of lactobacilli, bifidobacteria, and enterobacteria of the stomach, small intestine, cecum, and colon microflora. Moreover, the GG, BB12, and inulin mixture increased the concentrations of NPY and PYY for adult rats. For the elderly animals, the PYY concentration was not changed, while the NPY concentration was decreased by treatment with the GG, BB12, and inulin mixture. The results of the present study indicate that the physiological status of the GI tract, and not just diet, has a major role in the regulation of important groups of the GI bacteria community, since even the outcome of the dietary modification with synbiotics depends on the ages of the animals.