999 resultados para PTEN gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mammalian lignan, enterolactone, has been shown to reduce the proliferation of the earlier stages of prostate cancer at physiological concentrations in vitro. However, efficacy in the later stages of the disease occurs at concentrations difficult to achieve through dietary modification. We have therefore investigated what concentration(s) of enterolactone can restrict proliferation in multiple stages of prostate cancer using an in vitro model system of prostate disease. We determined that enterolactone at 20 μM significantly restricted the proliferation of mid and late stage models of prostate disease. These effects were strongly associated with changes in the expression of the DNA licencing genes (GMNN, CDT1, MCM2 and 7), in reduced expression of the miR-106b cluster (miR-106b, miR-93, and miR-25), and in increased expression of the PTEN tumour suppressor gene. We have shown anti-proliferative effects of enterolactone in earlier stages of prostate disease than previously reported and that these effects are mediated, in part, by microRNA-mediated regulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Das VHL-Syndrom umfasst Erkrankungen, die mit einem Funktionsverlust von VHL einhergehen. Das Tumorspektrum umfasst retinale und zerebrale Hämangioblastome, Nierenzysten und klarzellige Nierenkarzinome, Zysten und Tumore des Pankreas, Phäochromocytome, Adenome der Hoden und Tumore des Mittelohrs. Obwohl aufgrund klinischer Studien bekannt ist, welche VHL-Mutation mit welchen Neoplasien assoziiert werden können, konnte bisher kein VHL-Mausmodell das Krankheitsbild des VHL-Syndroms widerspiegeln. Daher ist vermutlich eine zusätzliche Fehlregulation weiterer Gene nötig ist, um die Tumorgenese in den verschiedenen Geweben zu induzieren. In mehreren klarzelligen Nierenkarzinomen konnte bereits eine PTEN-Defizienz nachgewiesen werden, der Verlust von PTEN wird außerdem auch mit der Tumorgenese von Phäochromocytomen assoziiert. Möglicherweise wirken VHL und PTEN also in der Tumorsuppression in der Niere und der Nebenniere zusammen.rnIm Rahmen dieser Arbeit konnte erstmals eine VHL-vermittelte Stabilisierung der PTEN-Konzentration sowohl in embryonalen als auch in Tumor-Zellen der Niere nachgewiesen werden. Die Analyse des Regulationsmechanismus ergab erstens eine Hypoxie-abhängige Abnahme der Transkription von PTEN. Des Weiteren konnte eine VHL-vermittelte Ubiquitinylierung von NEDD4-1, welches als E3-Ligase von PTEN dessen Degradation und Kerntransport reguliert, ermittelt werden. rnIn Nierenkarzinom-Zellen wurde weiterhin eine VHL- bzw. PTEN-Restitution induziert, um die Auswirkungen der beiden Tumorsuppressoren auf das Zellverhalten in vitro und in vivo zu untersuchen. Sowohl VHL als auch PTEN hatten dieselben Effekte lediglich in unterschiedlicher Intensität auf das Verhalten der Zellen. So konnte VHL- und PTEN-abhängig eine Verstärkung der Adhäsion, eine Inhibierung der Migration und eine Verminderung der Überlebens- und Metastasierungsfähigkeit nachgewiesen werden. Des Weiteren wurden Mausmodelle mit einem ubiquitären, heterozygoten Pten-Verlust generiert, die teilweise eine zusätzliche Haploinsuffizienz von Vhl bzw. eine heterozygote VHL Typ II-Mutation (V2B oder V2C) trugen. Sporadisch entwickelten diese Mäuse Vhl-abhängig Lebertumore und Pten-abhängig Lymphome und Ovarialkarzinome. Einige Mäuse mit einer kombinierten Vhl- und Pten-Defizienz bildeten zusätzlich Nierenzysten aus, die teilweise das gesamte Volumen der Niere einnahmen. Besonders häufig entstanden in Pten-haploinsuffizienten Mäusen Phäochromocytome, die durch eine zusätzliche V2B- oder V2C-Mutation in gleichaltrigen Mäusen deutlich weiterentwickelt waren. Demnach induziert erst der gemeinsame Verlust von Vhl und Pten die Bildung von Nierenzysten und Phäochromocytomen, welche dem Krankheitsbild des VHL-Syndroms zugeordnet werden.rnDie Untersuchungen innerhalb dieser Arbeit zeigen erstmalig die Interaktion und Kooperation von VHL und PTEN in der Tumorsuppression. Die Resultate bieten außerdem die Grundlage für weitere Analysen der Auswirkung der VHL-vermittelten PTEN-Stabilisierung und für detailliertere Untersuchungen der durch die kombinierte Vhl- und Pten-Defizienz induzierten Neoplasien der Niere und der Nebennieren-Tumore in in vivo Mausmodellen.rn

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The metabolic disorders that predispose patients to NASH (non-alcoholic steatohepatitis) include insulin resistance and obesity. Repeated hypoxic events, such as occur in obstructive sleep apnoea syndrome, have been designated as a risk factor in the progression of liver disease in such patients, but the mechanism is unclear, in particular the role of hypoxia. Therefore we studied the influence of hypoxia on the development and progression of steatohepatitis in an experimental mouse model. Mice with a hepatocellular-specific deficiency in the Pten (phosphatase and tensin homologue deleted on chromosome 10) gene, a tumour suppressor, were exposed to a 10% O2 (hypoxic) or 21% O2 (control) atmosphere for 7 days. Haematocrit, AST (aspartate aminotransferase), glucose, triacylglycerols (triglycerides) and insulin tolerance were measured in blood. Histological lesions were quantified. Expression of genes involved in lipogenesis and mitochondrial beta-oxidation, as well as FOXO1 (forkhead box O1), hepcidin and CYP2E1 (cytochrome P450 2E1), were analysed by quantitative PCR. In the animals exposed to hypoxia, the haematocrit increased (60+/-3% compared with 50+/-2% in controls; P<0.01) and the ratio of liver weight/body weight increased (5.4+/-0.2% compared with 4.7+/-0.3% in the controls; P<0.01). Furthermore, in animals exposed to hypoxia, steatosis was more pronounced (P<0.01), and the NAS [NAFLD (non-alcoholic fatty liver disease) activity score] (8.3+/-2.4 compared with 2.3+/-10.7 in controls; P<0.01), serum AST, triacylglycerols and glucose were higher. Insulin sensitivity decreased in mice exposed to hypoxia relative to controls. The expression of the lipogenic genes SREBP-1c (sterol-regulatory-element-binding protein-1c), PPAR-gamma (peroxisome-proliferator-activated receptor-gamma), ACC1 (acetyl-CoA carboxylase 1) and ACC2 (acetyl-CoA carboxylase 2) increased significantly in mice exposed to hypoxia, whereas mitochondria beta-oxidation genes [PPAR-alpha (peroxisome-proliferator-activated receptor-alpha) and CPT-1 (carnitine palmitoyltransferase-1)] decreased significantly. In conclusion, the findings of the present study demonstrate that hypoxia alone aggravates and accelerates the progression of NASH by up-regulating the expression of lipogenic genes, by down-regulating genes involved in lipid metabolism and by decreasing insulin sensitivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations into the molecular basis of glioblastoma multiforme led to the identification of a putative tumor suppressor gene, MMAC/ PTEN. Initial studies implicated MMAC/PTEN in many different tumor types, and identified a protein phosphatase motif in its sequence. This project aimed to identify the biological and biochemical functions of MMAC/PTEN by transiently expressing the gene in cancer cells that lack a functional gene product. ^ Expression of MMAC/PTEN mildly suppressed the growth of U251 human glioma cells and abrogated the growth advantage mediated by overexpression of the epidermal growth factor receptor (EGFR). Immunoblotting demonstrated that MMAC/PTEN expression did not affect the phosphorylation of the EGFR itself, or the intermediates of several downstream signaling pathways. However, MMAC/PTEN expression significantly reduced the phosphorylation and catalytic activity of the proto-oncogene Akt/PKB. While Akt/PKB regulates the survival of many cell types, expression of MMAC/PTEN did not induce apoptosis in adherent U251 cells. Instead, MMAC/PTEN expression sensitized the cells to apoptosis when maintained in suspension (anoikis). As the survival of suspended cells is one of the hallmarks leading to metastasis, MMAC/PTEN expression was examined in a system in which metastasis is more clinically relevant, prostate cancer. ^ Expression of MMAC/PTEN in both LNCaP and PC3-P human prostate cancer cells specifically inhibited Akt/PKB phosphorylation. MMAC/PTEN expression in LNCaP cells resulted in a profound inhibition of growth that was significantly greater than that achieved with expression of p53. Expression of MMAC/PTEN in PC3-P cells resulted in greater growth inhibition than was observed in U251 glioma cells, but less than was observed in LNCaP cells, or upon p53 expression. To determine if MMAC/PTEN could function as a tumor suppressor in vivo, the effects of MMAC/PTEN expression on PC3-P cells implanted orthotopically in nude mice were examined. The ex-vivo expression of MMAC/PTEN did not decrease tumor incidence, but it did significantly decrease tumor size and metastasis. In-vivo expression of MMAC/PTEN in pre-established PC3-P tumors did not significantly inhibit tumor incidence or size, but did inhibit metastasis formation. ^ These studies demonstrate that MMAC/PTEN is a novel and important tumor suppressor gene, which functions to downregulate an important cell survival signaling pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PTEN/MMAC1 is a tumor suppressor gene located on chromosome 10q23. Inherited PTEN/MMAC1 mutations are associated with a cancer predisposition syndrome known as Cowden’s disease. Somatic mutation of PTEN has been found in a number of malignancies, including glioblastoma, melanoma, and carcinoma of the prostate and endometrium. The protein product (PTEN) encodes a dual-specificity protein phosphatase and in addition can dephosphorylate certain lipid substrates. Herein, we show that PTEN protein induces a G1 block when reconstituted in PTEN-null cells. A PTEN mutant associated with Cowden’s disease (PTEN;G129E) has protein phosphatase activity yet is defective in dephosphorylating inositol 1,3,4,5-tetrakisphosphate in vitro and fails to arrest cells in G1. These data suggest a link between induction of a cell-cycle block by PTEN and its ability to dephosphorylate, in vivo, phosphatidylinositol 3,4,5-trisphosphate. In keeping with this notion, PTEN can inhibit the phosphatidylinositol 3,4,5-trisphosphate-dependent Akt kinase, a downstream target of phosphatidylinositol 3-kinase, and constitutively active, but not wild-type, Akt overrides a PTEN G1 arrest. Finally, tumor cells lacking PTEN contain high levels of activated Akt, suggesting that PTEN is necessary for the appropriate regulation of the phosphatidylinositol 3-kinase/Akt pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PTEN/MMAC1/TEP1 is a tumor suppressor that possesses intrinsic phosphatase activity. Deletions or mutations of its encoding gene are associated with a variety of human cancers. However, very little is known about the molecular mechanisms by which this important tumor suppressor regulates cell growth. Here, we show that PTEN expression potently suppressed the growth and tumorigenicity of human glioblastoma U87MG cells. The growth suppression activity of PTEN was mediated by its ability to block cell cycle progression in the G1 phase. Such an arrest correlated with a significant increase of the cell cycle kinase inhibitor p27KIP1 and a concomitant decrease in the activities of the G1 cyclin-dependent kinases. PTEN expression also led to the inhibition of Akt/protein kinase B, a serine-threonine kinase activated by the phosphatidylinositol 3-kinase (PI 3-kinase) signaling pathway. In addition, the effect of PTEN on p27KIP1 and the cell cycle can be mimicked by treatment of U87MG cells with LY294002, a selective inhibitor of PI 3-kinase. Taken together, our studies suggest that the PTEN tumor suppressor modulates G1 cell cycle progression through negatively regulating the PI 3-kinase/Akt signaling pathway, and one critical target of this signaling process is the cyclin-dependent kinase inhibitor p27KIP1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PTEN/MMAC1 phosphatase is a tumor suppressor gene implicated in a wide range of human cancers. Here we provide biochemical and functional evidence that PTEN/MMAC1 acts a negative regulator of the phosphoinositide 3-kinase (PI3-kinase)/Akt pathway. PTEN/MMAC1 impairs activation of endogenous Akt in cells and inhibits phosphorylation of 4E-BP1, a downstream target of the PI3-kinase/Akt pathway involved in protein translation, whereas a catalytically inactive, dominant negative PTEN/MMAC1 mutant enhances 4E-BP1 phosphorylation. In addition, PTEN/MMAC1 represses gene expression in a manner that is rescued by Akt but not PI3-kinase. Finally, higher levels of Akt activation are observed in human prostate cancer cell lines and xenografts lacking PTEN/MMAC1 expression when compared with PTEN/MMAC1-positive prostate tumors or normal prostate tissue. Because constitutive activation of either PI3-kinase or Akt is known to induce cellular transformation, an increase in the activation of this pathway caused by mutations in PTEN/MMAC1 provides a potential mechanism for its tumor suppressor function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most recently discovered PTEN tumor suppressor gene has been found to be defective in a large number of human cancers. In addition, germ-line mutations in PTEN result in the dominantly inherited disease Cowden syndrome, which is characterized by multiple hamartomas and a high proclivity for developing cancer. A series of publications over the past year now suggest a mechanism by which PTEN loss of function results in tumors. PTEN appears to negatively control the phosphoinositide 3-kinase signaling pathway for regulation of cell growth and survival by dephosphorylating the 3 position of phosphoinositides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background There is evidence that certain mutations in the double-strand break repair pathway ataxia-telangiectasia mutated gene act in a dominant-negative manner to increase the risk of breast cancer. There are also some reports to suggest that the amino acid substitution variants T2119C Ser707Pro and C3161G Pro1054Arg may be associated with breast cancer risk. We investigate the breast cancer risk associated with these two nonconservative amino acid substitution variants using a large Australian population-based case–control study. Methods The polymorphisms were genotyped in more than 1300 cases and 600 controls using 5' exonuclease assays. Case–control analyses and genotype distributions were compared by logistic regression. Results The 2119C variant was rare, occurring at frequencies of 1.4 and 1.3% in cases and controls, respectively (P = 0.8). There was no difference in genotype distribution between cases and controls (P = 0.8), and the TC genotype was not associated with increased risk of breast cancer (adjusted odds ratio = 1.08, 95% confidence interval = 0.59–1.97, P = 0.8). Similarly, the 3161G variant was no more common in cases than in controls (2.9% versus 2.2%, P = 0.2), there was no difference in genotype distribution between cases and controls (P = 0.1), and the CG genotype was not associated with an increased risk of breast cancer (adjusted odds ratio = 1.30, 95% confidence interval = 0.85–1.98, P = 0.2). This lack of evidence for an association persisted within groups defined by the family history of breast cancer or by age. Conclusion The 2119C and 3161G amino acid substitution variants are not associated with moderate or high risks of breast cancer in Australian women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.