994 resultados para PROCESSOS ESTOCÁSTICOS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Biofísica Molecular - IBILCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Música - IA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider an interacting particle system representing the spread of a rumor by agents on the d-dimensional integer lattice. Each agent may be in any of the three states belonging to the set {0,1,2}. Here 0 stands for ignorants, 1 for spreaders and 2 for stiflers. A spreader tells the rumor to any of its (nearest) ignorant neighbors at rate lambda. At rate alpha a spreader becomes a stifler due to the action of other (nearest neighbor) spreaders. Finally, spreaders and stiflers forget the rumor at rate one. We study sufficient conditions under which the rumor either becomes extinct or survives with positive probability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho aborda o problema de previsão para séries de vazões médias mensais, no qual denomina-se de horizonte de previsão (h), o intervalo de tempo que separa a última observação usada no ajuste do modelo de previsão e o valor futuro a ser previsto. A análise do erro de previsão é feita em função deste horizonte de previsão. Estas séries possuem um comportamento periódico na média, na variância e na função de autocorrelação. Portanto, considera-se a abordagem amplamente usada para a modelagem destas séries que consiste inicialmente em remover a periodicidade na média e na variância das séries de vazões e em seguida calcular uma série padronizada para a qual são ajustados modelos estocásticos. Neste estudo considera-se para a série padronizada os modelos autorregressivos periódicos PAR (p m). As ordens p m dos modelos ajustados para cada mês são determinadas usando os seguintes critérios: a análise clássica da função de autocorrelação parcial periódica (FACPPe); usando-se o Bayesian Information Criterion (BIC) proposto em (MecLeod, 1994); e com a análise da FACPPe proposta em (Stedinger, 2001). Os erros de previsão são calculados, na escala original da série de vazão, em função dos parâmetros dos modelos ajustados e avaliados para horizontes de previsão h variando de 1 a 12 meses. Estes erros são comparados com as estimativas das variâncias das vazões para o mês que está sendo previsto. Como resultado tem-se uma avaliação da capacidade de previsão, em meses, dos modelos ajustados para cada mês.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste artigo propomos uma adaptação de um algoritmo baseado na evolução biológica para a obtenção do controle ótimo do problema do custo médio a longo prazo para sistemas lineares com saltos markovianos. Não há na literatura um método que forneça, comprovadamente, o controle ótimo do problema, nem estudos comparativos de diferentes métodos. O algoritmo empregado diferencia-se dos algoritmos genéticos básicos por substituir os operadores evolutivos por um sorteio de acordo com uma distribuição probabilística. Comparamos o algoritmo proposto com um método bastante utilizado para esta classe de problema, levando em consideração a relação entre os custos obtidos, o tempo de CPU e a quantidade de problemas em que o critério de parada estabelecido foi atingido.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a one-dimensional nonlocal hopping model with exclusion on a ring. The model is related to the Raise and Peel growth model. A nonnegative parameter u controls the ratio of the local backwards and nonlocal forwards hopping rates. The phase diagram, and consequently the values of the current, depend on u and the density of particles. In the special case of half-lling and u = 1 the system is conformal invariant and an exact value of the current for any size L of the system is conjectured and checked for large lattice sizes in Monte Carlo simulations. For u > 1 the current has a non-analytic dependence on the density when the latter approaches the half-lling value.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a general class of mathematical models for stochastic gene expression where the transcription rate is allowed to depend on a promoter state variable that can take an arbitrary (finite) number of values. We provide the solution of the master equations in the stationary limit, based on a factorization of the stochastic transition matrix that separates timescales and relative interaction strengths, and we express its entries in terms of parameters that have a natural physical and/or biological interpretation. The solution illustrates the capacity of multiple states promoters to generate multimodal distributions of gene products, without the need for feedback. Furthermore, using the example of a three states promoter operating at low, high, and intermediate expression levels, we show that using multiple states operons will typically lead to a significant reduction of noise in the system. The underlying mechanism is that a three-states promoter can change its level of expression from low to high by passing through an intermediate state with a much smaller increase of fluctuations than by means of a direct transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No estudo de séries temporais, os processos estocásticos usuais assumem que as distribuições marginais são contínuas e, em geral, não são adequados para modelar séries de contagem, pois as suas características não lineares colocam alguns problemas estatísticos, principalmente na estimação dos parâmetros. Assim, investigou-se metodologias apropriadas de análise e modelação de séries com distribuições marginais discretas. Neste contexto, Al-Osh and Alzaid (1987) e McKenzie (1988) introduziram na literatura a classe dos modelos autorregressivos com valores inteiros não negativos, os processos INAR. Estes modelos têm sido frequentemente tratados em artigos científicos ao longo das últimas décadas, pois a sua importância nas aplicações em diversas áreas do conhecimento tem despertado um grande interesse no seu estudo. Neste trabalho, após uma breve revisão sobre séries temporais e os métodos clássicos para a sua análise, apresentamos os modelos autorregressivos de valores inteiros não negativos de primeira ordem INAR (1) e a sua extensão para uma ordem p, as suas propriedades e alguns métodos de estimação dos parâmetros nomeadamente, o método de Yule-Walker, o método de Mínimos Quadrados Condicionais (MQC), o método de Máxima Verosimilhança Condicional (MVC) e o método de Quase Máxima Verosimilhança (QMV). Apresentamos também um critério automático de seleção de ordem para modelos INAR, baseado no Critério de Informação de Akaike Corrigido, AICC, um dos critérios usados para determinar a ordem em modelos autorregressivos, AR. Finalmente, apresenta-se uma aplicação da metodologia dos modelos INAR em dados reais de contagem relativos aos setores dos transportes marítimos e atividades de seguros de Cabo Verde.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

No estudo de séries temporais, os processos estocásticos usuais assumem que as distribuições marginais são contínuas e, em geral, não são adequados para modelar séries de contagem, pois as suas características não lineares colocam alguns problemas estatísticos, principalmente na estimação dos parâmetros. Assim, investigou-se metodologias apropriadas de análise e modelação de séries com distribuições marginais discretas. Neste contexto, Al-Osh and Alzaid (1987) e McKenzie (1988) introduziram na literatura a classe dos modelos autorregressivos com valores inteiros não negativos, os processos INAR. Estes modelos têm sido frequentemente tratados em artigos científicos ao longo das últimas décadas, pois a sua importância nas aplicações em diversas áreas do conhecimento tem despertado um grande interesse no seu estudo. Neste trabalho, após uma breve revisão sobre séries temporais e os métodos clássicos para a sua análise, apresentamos os modelos autorregressivos de valores inteiros não negativos de primeira ordem INAR (1) e a sua extensão para uma ordem p, as suas propriedades e alguns métodos de estimação dos parâmetros nomeadamente, o método de Yule-Walker, o método de Mínimos Quadrados Condicionais (MQC), o método de Máxima Verosimilhança Condicional (MVC) e o método de Quase Máxima Verosimilhança (QMV). Apresentamos também um critério automático de seleção de ordem para modelos INAR, baseado no Critério de Informação de Akaike Corrigido, AICC, um dos critérios usados para determinar a ordem em modelos autorregressivos, AR. Finalmente, apresenta-se uma aplicação da metodologia dos modelos INAR em dados reais de contagem relativos aos setores dos transportes marítimos e atividades de seguros de Cabo Verde.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior