1000 resultados para POTTS MODELS
Resumo:
We present both analytical and numerical results on the position of partition function zeros on the complex magnetic field plane of the q=2 state (Ising) and the q=3 state Potts model defined on phi(3) Feynman diagrams (thin random graphs). Our analytic results are based on the ideas of destructive interference of coexisting phases and low temperature expansions. For the case of the Ising model, an argument based on a symmetry of the saddle point equations leads us to a nonperturbative proof that the Yang-Lee zeros are located on the unit circle, although no circle theorem is known in this case of random graphs. For the q=3 state Potts model, our perturbative results indicate that the Yang-Lee zeros lie outside the unit circle. Both analytic results are confirmed by finite lattice numerical calculations.
Resumo:
We derive an infinite set of conserved charges for some Z(N) symmetric quantum spin models by constructing their Lax pairs. These models correspond to the Potts model, Ashkin-Teller model and the particular set of self-dual Z(N) models solved by Fateev and Zamolodchikov [6]. The exact ground state energy for this last family of hamiltonians is also presented. © 1986.
Resumo:
A complete understanding of the glass transition isstill a challenging problem. Some researchers attributeit to the (hypothetical) occurrence of a static phasetransition, others emphasize the dynamical transitionof mode coupling-theory from an ergodic to a non ergodicstate. A class of disordered spin models has been foundwhich unifies both scenarios. One of these models isthe p-state infinite range Potts glass with p>4, whichexhibits in the thermodynamic limit both a dynamicalphase transition at a temperature T_D, and a static oneat T_0 < T_D. In this model every spins interacts withall the others, irrespective of distance. Interactionsare taken from a Gaussian distribution.In order to understand better its behavior forfinite number N of spins and the approach to thethermodynamic limit, we have performed extensive MonteCarlo simulations of the p=10 Potts glass up to N=2560.The time-dependent spin-autocorrelation function C(t)shows strong finite size effects and it does not showa plateau even for temperatures around the dynamicalcritical temperature T_D. We show that the N-andT-dependence of the relaxation time for T > T_D can beunderstood by means of a dynamical finite size scalingAnsatz.The behavior in the spin glass phase down to atemperature T=0.7 (about 60% of the transitiontemperature) is studied. Well equilibratedconfigurations are obtained with the paralleltempering method, which is also useful for properlyestablishing static properties, such as the orderparameter distribution function P(q). Evidence is givenfor the compatibility with a one step replica symmetrybreaking scenario. The study of the cumulants of theorder parameter does not permit a reliable estimation ofthe static transition temperature. The autocorrelationfunction at low T exhibits a two-step decay, and ascaling behavior typical of supercooled liquids, thetime-temperature superposition principle, is observed. Inthis region the dynamics is governed by Arrheniusrelaxations, with barriers growing like N^{1/2}.We analyzed the single spin dynamics down to temperaturesmuch lower than the dynamical transition temperature. We found strong dynamical heterogeneities, which explainthe non-exponential character of the spin autocorrelationfunction. The spins seem to relax according to dynamicalclusters. The model in three dimensions tends to acquireferromagnetic order for equal concentration of ferro-and antiferromagnetic bonds. The ordering has differentcharacteristics from the pure ferromagnet. The spinglass susceptibility behaves like chi_{SG} proportionalto 1/T in the region where a spin glass is predicted toexist in mean-field. Also the analysis of the cumulantsis consistent with the absence of spin glass orderingat finite temperature. The dynamics shows multi-scalerelaxations if a bimodal distribution of bonds isused. We propose to understand it with a model based onthe local spin configuration. This is consistent with theabsence of plateaus if Gaussian interactions are used.
Resumo:
We present a microcanonical Monte Carlo simulation of the site-diluted Potts model in three dimensions with eight internal states, partly carried out on the citizen supercomputer Ibercivis. Upon dilution, the pure model’s first-order transition becomes of the second order at a tricritical point. We compute accurately the critical exponents at the tricritical point. As expected from the Cardy-Jacobsen conjecture, they are compatible with their random field Ising model counterpart. The conclusion is further reinforced by comparison with older data for the Potts model with four states.
Comparison of Regime Switching, Probit and Logit Models in Dating and Forecasting US Business Cycles