960 resultados para PERI-IMPLANT BONE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: To study the influence on the healing of soft and hard peri-implant tissues when implants of different sizes and configurations were installed into sockets immediately after tooth extraction.Material and methods: Transmucosal cylindrical implants, 3.3 mm in diameter in the control sites, and conical 5 mm in diameter in the test sites, were installed into the distal socket of the fourth mandibular premolars in dogs immediately after tooth extraction. After 4 months, the hard and soft tissue healing was evaluated histologically. Results: All implants were integrated in mineralized mature bone. Both at the test and control sites, the alveolar crest underwent resorption. The buccal bony surface at the implant test sites (conical; 3.8 mm) was more resorbed compared with the control sites (cylindrical; 1.6 mm). The soft tissue dimensions were similar in both groups. However, in relation to the implant shoulder, the peri-implant mucosa was located more apically at the test compared with the control sites.Conclusion: The present study confirmed that the distance between the implant surface and the outer contour of the buccal alveolar bony crest influenced the degree of resorption of the buccal bone plate. Consequently, in relation to the implant shoulder, the peri-implant mucosa will be established at a more apical level, if the distance between the implant surface and the outer contour of the alveolar crest is small.
Resumo:
AimTo evaluate the influence (i) of various implant platform configurations and (ii) of implant surface characteristics on peri-implant tissue dimensions in a dog model.Material and methodsMandibular premolars and first molars were extracted bilaterally in six Labrador dogs. After 3 months of healing, two implants, one with a turned and a second with a moderately rough surface, were installed on each side of the mandible in the premolar region. on the right side of the mandible, implants with a tapered and enlarged platform were used, while standard cylindrical implants were installed in the left side of the mandible. Abutments with the diameter of the cylindrical implants were used resulting in a mismatch of 0.25 mm at the tapered implant sites. The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.ResultsAll implants were completely osseointegrated. A minimal buccal bone resorption was observed for both implant configurations and surface topographies. Considering the animals as the statistical unit, no significant differences were found at the buccal aspect in relation to bone levels and soft tissue dimensions. The surface topographies did not influence the outcomes either.ConclusionsThe present study failed to show differences in peri-implant tissue dimensions when a mismatch of 0.25 mm from a tapered platform to an abutment was applied. The surface topographies influence a neither marginal bone resorption or peri-implant soft tissue dimension.To cite this article:Baffone GM, Botticelli D, Pantani F, Cardoso LC, Schweikert MT, Lang NP. Influence of various implant platform configurations on peri-implant tissue dimensions: an experimental study in dog.Clin. Oral Impl. Res. 22, 2011; 438-444.
Resumo:
Purpose: The goal of this study was to evaluate microbiota and radiographic peri-implant bone loss associated with ligature-induced peri-implantitis. Materials and Methods: Thirty-six dental implants with 4 different surfaces (9 commercially pure titanium, 9 titanium plasma-sprayed, 9 hydroxyapatite, and 9 acid-etched) were placed in the edentulous mandibles of 6 dogs. After 3 months with optimal plaque control, abutment connection was performed. On days 0, 20, 40, and 60 after placement of cotton ligatures, both microbiologic samples and periapical radiographs were obtained. The presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Campylobacter spp, Capnocytophaga spp, Fusobacterium spp, beta-hemolytic Streptococcus, and Candida spp were evaluated culturally. Results: P intermedia/nigrescens was detected in 13.89% of implants at baseline and 100% of implants at other periods. P gingivalis was not detected at baseline, but after 20 and 40 days it was detected in 33.34% of implants and at 60 days it was detected in 29.03% of dental implants. Fusobacterium spp was detected in all periods. Streptococci were detected in 16.67% of implants at baseline and in 83.34%, 72.22%, and 77.42% of implants at 20, 40, and 60 days, respectively. Campylobacter spp and Candida spp were detected in low proportions. The total viable count analysis showed no significant differences among surfaces (P = .831), although a significant difference was observed after ligature placement (P < .0014). However, there was no significant qualitative difference, in spite of the difference among the periods. The peri-implant bone loss was not significantly different between all the dental implant surfaces (P = .908). Discussion and Conclusions: These data suggest that with ligature-induced peri-implantitis, both time and periodontal pathogens affect all surfaces equally after 60 days.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.
Resumo:
Craniofacial osseointegrated implants enabled producing implant-retained facial prosthesis, namely the orbital prosthesis. Aim: To evaluate the length and width of the bone structure of the peri-orbital region and to present the method validation. Methods: Computed tomography scans of 30 dry human skulls were obtained in order to register linear length and width measurements of the periorbital region. Two examiners made the measurements twice with intervals of at least 7 days between them. Data were analyzed by descriptive statistics and the paired Student's t-test was used as inferential technique (SAS, α =0.05). Results: In most cases, the intra- and inter-examiner variations were not significant (p>0.05). Therefore, the method proposed was considered as precise and valid for the measurement of the peri-orbital region. The measured points correspond to the hours of a clock. The major lengths were observed at 1 h (18.32 mm) for the left peri-orbital bone and at 11h (19.28 mm) for the right peri-orbital bone, followed by the points situated at 2h (13.05 mm) and 12h (11.37 mm) for the left side and at 10 h (12.34 mm) and 12 h (11.56 mm) for the right side. It was verified that the three points with lowest values followed the same anatomical sequence in the supraorbital rim for the right and left orbits, showing compatibility with the insertion of the intraoral osseointegrated implants. The medial wall of both orbits did not present sufficient length to allow the insertion of intraoral or craniofacial implants. Conclusions: The largest width points were observed in the supraorbital rim and in the infralateral region of both orbits and those of smallest width were found in the supralateral region of both orbits.
Resumo:
Aim: To evaluate the influence of the presence or absence of adjacent teeth on the level of the mesial and distal alveolar bony crest following healing at sites where implants were installed immediately into extraction sockets. Material and methods: Six Labrador dogs were used. In the right side of the mandible, full-thickness flaps were elevated, and the second, third, and fourth premolars and first molars were extracted. In the left side of the mandible, endodontic treatments of the mesial roots of the third and fourth premolars as well as of the first molars were performed. Full-thickness flaps were elevated, the teeth were hemi-sected, and the distal roots were removed. The second premolars were extracted as well. Subsequently, implants were bilaterally installed with the implant shoulder flush with the buccal bony crest. Implants were placed in the center of the alveoli, but at the fourth premolars, they were placed toward the lingual bony plate of the alveoli. After 3 months of healing, the animals were euthanized and histological sections of the sites prepared. Results: Larger bony crest resorption was observed at the test compared with the control sites, both at the bucco-lingual and mesio-distal aspects. The differences between test and controls for the coronal level of osseointegration were smaller than those for resorption. When data from all mesial and distal sites facing an adjacent tooth were collapsed and compared with those opposing an edentulous zone, lower bony crest resorption and deeper residual marginal defects were found at the sites with neighboring teeth. Conclusion: The extraction of teeth adjacent to a socket into which implants were installed immediately after tooth extraction caused more alveolar bone resorption both for the bucco-lingual and at the mesio-distal aspects compared with sites adjacent to a maintained tooth. © 2012 John Wiley & Sons A/S.
Resumo:
Aim: To evaluate the influence of the width of the buccal bony wall on hard and soft tissue dimensions following implant installation. Material and methods: Mandibular premolars and first molars of six Labrador dogs were extracted bilaterally. After 3 months of healing, two recipient sites, one on each side of the mandible, were prepared in such a way as to obtain a buccal bony ridge width of about 2 mm in the right (control) and 1 mm in the left sides (test), respectively. Implants were installed with the coronal margin flush with the buccal alveolar bony crest. Abutments were placed and the flaps were sutured to allow a non-submerged healing. After 3 months, the animals were euthanized and ground sections obtained. Results: All implants were completely osseointegrated. In respect to the coronal rough margin of the implant, the most coronal bone-to-implant contact was apically located 1.04 ± 0.91 and 0.94 ± 0.87 mm at the test and control sites, respectively, whereas the top of the bony crest was located 0.30 ± 0.40 mm at the test and 0.57 ± 0.49 mm at the control sites. No statistically significant differences were found. A larger horizontal bone resorption, however, evaluated 1 mm apically to the rough margin, was found at the control (1.1 ± 0.7 mm) compared to the test (0.3 ± 0.3 mm) sites, the difference being statistically significant. A thin peri-implant mucosa (2.4-2.6 mm) was found at implant installation while, after 3 months of healing, a biological width of 3.90-4.40 mm was observed with no statistically significant differences between control and test sites. Conclusions: A width of the buccal bony wall of 1or 2 mm at implant sites yielded similar results after 3 months of healing in relation of hard tissue and soft tissues dimensions after implant installation. © 2012 John Wiley & Sons A/S.
Resumo:
The aim of this study was to evaluate stress distribution of the peri-implant bone by simulating the biomechanical influence of implants with different diameters of regular or platform switched connections by means of 3-dimensional finite element analysis. Five mathematical models of an implant-supported central incisor were created by varying the diameter (5.5 and 4.5 mm, internal hexagon) and abutment platform (regular and platform switched). For the cortical bone, the highest stress values (rmax and rvm) were observed in situation R1, followed by situations S1, R2, S3, and S2. For the trabecular bone, the highest stress values (rmax) were observed in situation S3, followed by situations R1, S1, R2, and S2. The influence of platform switching was more evident for cortical bone than for trabecular bone and was mainly seen in large platform diameter reduction.
Resumo:
The aim of this study was to evaluate stress distribution in the fixation screws and bone tissue around implants in single-implant supported prostheses with crowns of different heights (10,12.5, 15 mm crown-to-implant ratio 1:1, 1.25:1, 1.5:1, respectively). It was designed using three 3-Dmodels. Each model was developed with a mandibular segment of bone block including an internal hexagon implant supporting a screw-retained, single metalceramic crown. The crown height was set at 10, 12.5, and 15 mm with crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. The applied forces were 200 N (axial) and 100 N (oblique). The increase of crown height showed differences with the oblique load in some situations. By von Mises'criterion, a high stress area was concentrated at the implant/fixation screw and abutment/implant interfaces at crown-to-implant ratio of 1:1, 1.25:1, 1.5:1, respectively. Using the maxiinum principal criteria, the buccal regions showed higher traction stress intensity, whereas the distal regions showed the largest compressive stress in all models. The increase of C/I ratio must be carefully evaluated by the dentist since the increase of this C/I ratio is proportional to the increase of average stress for both screw fixation (C/I 1:1 to 1:1.25 ratio = 30.1% and C/I 1:1 to 1 :1.5 ratio = 46.3%) and bone tissue (C/I 1:1 to 1:1.25 ratio = 30% and C/I 1:1 to 1:1.5 ratio = 51.5%). (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Objective Several implant surfaces are being developed, some in the nanoscale level. In this study, two different surfaces had their early healing properties compared in context of circumferential defects of various widths. Material and methods Six dogs had the mandibular premolars extracted. After 8weeks, four implants were placed equicrestally in each side. One acted as control, while the others were inserted into sites with circumferential defects of 1.0, 1.5 and 2.0mm wide and 5mm deep. A nano-modified surface was used on one side and a micro-rough on the other. Bone markers were administered on the third day after implant placement and then after 1, 2, 4weeks to investigate the bone formation dynamic through fluorescence analysis. Ground sections were prepared from 8-week healing biopsies and histomorphometry was performed. Results The fluorescence evaluation of the early healing showed numerically better results for the nano-modified group; however this trend was not followed by the histomorphometric evaluation. A non-significant numerical superiority of the micro-rough group was observed in terms of vertical bone apposition, defect bone fill, bone-to-implant contact and bone density. In the intra-group analysis, the wider defects showed the worse results while the control sites showed the best results for the different parameters, but without statistical relevance. Conclusion Both surfaces may lead to complete fill of circumferential defects, but the gap width has to be considered as a challenge. The nano-scale modification was beneficial in the early stages of bone healing, but the micro-rough surface showed numerical better outcomes at the 8-week final period.
Resumo:
OBJECTIVES: The aim of this study was to compare the long-term outcomes of implants placed in patients treated for periodontitis periodontally compromised patients (PCP) and in periodontally healthy patients (PHP) in relation to adhesion to supportive periodontal therapy (SPT). MATERIAL AND METHODS: One hundred and twelve partially edentulous patients were consecutively enrolled in private specialist practice and divided into three groups according to their initial periodontal condition: PHP, moderate PCP and severe PCP. Perio and implant treatment was carried out as needed. Solid screws (S), hollow screws (HS) and hollow cylinders (HC) were installed to support fixed prostheses, after successful completion of initial periodontal therapy (full-mouth plaque score <25% and full-mouth bleeding score <25%). At the end of treatment, patients were asked to follow an individualized SPT program. At 10 years, clinical measures and radiographic bone changes were recorded by two calibrated operators, blinded to the initial patient classification. RESULTS: Eleven patients were lost to follow-up. During the period of observation, 18 implants were removed because of biological complications. The implant survival rate was 96.6%, 92.8% and 90% for all implants and 98%, 94.2% and 90% for S-implants only, respectively, for PHP, moderate PCP and severe PCP. The mean bone loss was 0.75 (+/- 0.88) mm in PHP, 1.14 (+/- 1.11) mm in moderate PCP and 0.98 (+/- 1.22) mm in severe PCP, without any statistically significant difference. The percentage of sites, with bone loss > or =3 mm, was, respectively, 4.7% for PHP, 11.2% for moderate PCP and 15.1% for severe PCP, with a statistically significant difference between PHP and severe PCP (P<0.05). Lack of adhesion to SPT was correlated with a higher incidence of bone loss and implant loss. CONCLUSION: Patients with a history of periodontitis presented a lower survival rate and a statistically significantly higher number of sites with peri-implant bone loss. Furthermore, PCP, who did not completely adhere to the SPT, were found to present a higher implant failure rate. This underlines the value of the SPT in enhancing the long-term outcomes of implant therapy, particularly in subjects affected by periodontitis, in order to control reinfection and limit biological complications.
Resumo:
An implant-abutment interface at the alveolar bone crest is associated with sustained peri-implant inflammation; however, whether magnitude of inflammation is proportionally dependent upon interface position remains unknown. This study compared the distribution and density of inflammatory cells surrounding implants with a supracrestal, crestal, or subcrestal implant-abutment interface. All implants developed a similar pattern of peri-implant inflammation: neutrophilic polymorphonuclear leukocytes (neutrophils) maximally accumulated at or immediately coronal to the interface. However, peri-implant neutrophil accrual increased progressively as the implant-abutment interface depth increased, i.e., subcrestal interfaces promoted a significantly greater maximum density of neutrophils than did supracrestal interfaces (10,512 +/- 691 vs. 2398 +/- 1077 neutrophils/mm(2)). Moreover, inflammatory cell accumulation below the original bone crest was significantly correlated with bone loss. Thus, the implant-abutment interface dictates the intensity and location of peri-implant inflammatory cell accumulation, a potential contributing component in the extent of implant-associated alveolar bone loss.
Resumo:
BACKGROUND: The concept of early implant placement is a treatment option in postextraction sites of single teeth in the anterior maxilla. Implant placement is performed after a soft tissue healing period of 4 to 8 weeks. Implant placement in a correct three-dimensional position is combined with a simultaneous guided bone regeneration procedure to rebuild esthetic facial hard and soft tissue contours. METHODS: In this retrospective, cross-sectional study, 45 patients with an implant-borne single crown in function for 2 to 4 years were recalled for examination. Clinical and radiologic parameters, routinely used in implant studies, were assessed. RESULTS: All 45 implants were clinically successful according to strict success criteria. The implants demonstrated ankylotic stability without signs of a peri-implant infection. The peri-implant soft tissues were clinically healthy as indicated by low mean plaque (0.42) and sulcus bleeding index (0.51) values. None of the implants revealed a mucosal recession on the facial aspect as confirmed by a clearly submucosal position of all implant shoulders. The mean distance from the mucosal margin to the implant shoulder was -1.93 mm on the facial aspect. The periapical radiographs showed stable peri-implant bone levels, with a mean distance between the implant shoulder and the first bone-implant contact of 2.18 mm. CONCLUSIONS: This retrospective study demonstrated successful treatment outcomes for all 45 implants examined. The mid-term follow-up of 2 to 4 years also showed that the risk for mucosal recession was low with this treatment concept. Prospective clinical studies are required to confirm these encouraging results.