621 resultados para P450
Resumo:
A variety of polycyclic aromatic hydrocarbons and their dihydrodiol derivatives, arylamines, heterocyclic amines, and nitroarenes, were incubated with cDNA-based recombinant (Escherichia coli or Trichoplusia ni) systems expressing different forms of human cytochrome P450 (P450 or CYP) and NADPH-P450 reductase using Salmonella typhimurium, tester strain NM2009, and the resultant DNA damage caused by the reactive metabolites was detected by measuring expression of umu gene in the cells. Recombinant (bacterial) CYP1A1 was slightly more active than any of four CYP1B1 allelic variants, CYP1B1*1, CYP1B1*2, CYP1B1*3, and CYP1B1*6, in catalyzing activation of chrysene-1,2-diol, benz[a]anthracene-trans-1,2-, 3,4-, 5,6-, and 8,9-diol, fluoranthene-2,3-diol, dibenzo[a]pyrene, benzo[c]phenanthrene, and dibenz[a,h]anthracene and several arylamines and heterocyclic amines, whereas CYP1A1 and CYP1B1 enzymes had essentially similar catalytic specificities toward other procarcinogens, such as (+)-, (-)-, and (+/-)-benzo[a]pyrene-7,8-diol, 5-methylchrysene-1,2-diol, 7,12-dimethylbenz[a]anthracene-3,4-diol, dibenzo[a,l]pyrene-11,12-diol, benzo[b]fluoranthene-9,10-diol, benzo[c]chrysene, 5,6-dimethylchrysene-1,2-diol, benzo[c]phenanthrene-3,4-diol, 7,12-dimethylbenz[a]anthracene, benzo[a]pyrene, 5-methylchrysene, and benz[a]anthracene. We also determined activation of these procarcinogens by recombinant (T. ni) human P450 enzymes in S. typhimurium NM2009. There were good correlations between activities of procarcinogen activation by CYP1A1 preparations expressed in E. coli and T. ni cells, although basal activities with three lots of CYP1B1 in T. ni cells were very high without substrates and NADPH in our assay system. Using 14 forms of human P450S (but not CYP1B1) (in T. ni cells), we found that CY1P1A2, 2C9, 3A4, and 2C19 catalyzed activation of several of polycyclic aromatic hydrocarbons at much slower rates than those catalyzed by CYP1A1 and that other enzymes, including CYP2A6, 2B6, 2C8, 2C18, 2D6, 2E1, 3A5, 3A7, and 4A11, were almost inactive in the activation of polycyclic aromatic hydrocarbons examined here.
Resumo:
We investigated roles of different forms of cytochrome P450 (P450 or CYP) in the metabolic activation of heterocyclic amines (HCAs) and other procarcinogens to genotoxic metabolite(s) in the newly developed umu tester strains Salmonella typhimurium (S. typhimurium) OY1002/1A1, OY1002/1A2, OY1002/1B1, OY1002/2C9, OY1002/2D6, OY1002/2E1 and OY 1002/3A4. which express respective human P450 enzymes and NADPH-cytochrome P350 reductase (reductase) and bacterial O-acetyltransferase (O-AT). These strains were established by introducing two plasmids into S. typhimurium TA 1535, one carrying both P450 and the reductase cDNA in a bicistronic construct under control of an IPTG-inducible double me promoter and the other, pOA 102, carrying O-AT and umuClacZ fusion genes. Expression levels of CYP were found to range between 35 to 550 nmol/l cell culture in the strains tested. O-AT activities in different strains ranged from 52 to 135 nmol isoniazid acetylated/min/mg protein. All HCAs tested, and 2-aminoanthracene and 2-aminofluorene exhibited high genotoxicity in the OY1002/1A2 strain, and genotoxicity of 2-amino-3-methylimidazo [4,5-f]quinoline was detected in both the OY1002/1A1 and OY1002/1A2 strains. 1-Amino-1,4-dimethyl-5H-pyrido[4.3-b]-indole and 3-amino-1-methyl-5H-pyrido[4,3-b]-indole were activated in the OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4 strains. Aflatoxin B-1 exhibited genotoxicity in the OY1002/1A2, OY1002/1A1, and OY1002/3A4 strains. beta -Naphthylamine and benzo[a]pyrene did not exhibit genotoxicity in any of the strains. These results suggest that CYP1A2 is the major cytochrom P450 enzyme involved in bioactivation of HCAs. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This review discusses the mechanisms of oxygen activation by cytochrome P450 enzymes, the possible catalytic roles of the various iron-oxygen species formed in the catalytic cycle, and progress in understanding the mechanisms of hydrocarbon hydroxylation, heteroatom oxidation, and olefin epoxidation. The focus of the review is on recent results, but earlier work is discussed as appropriate. The literature through to February 2002 is surveyed, and 175 referenced are cited.
Resumo:
Cytochromes P450 are members of a superfamily of hemoproteins involved in the oxidative metabolism of various physiologic and xenobiotic compounds in eukaryotes and prokaryotes. Studies on bacterial P450s, particularly those involved in monoterpene oxidation, have provided an integral contribution to our understanding of these proteins, away from the problems encountered with eukaryotic forms. We report here a novel cytochrome P450 (P450(cin), CYP176A1) purified from a strain of Citrobacter braakii that is capable of using cineole 1 as its sole source of carbon and energy. This enzyme has been purified to homogeneity and the amino acid sequences of three tryptic peptides determined. By using this information, a PCR-based cloning strategy was developed that allowed the isolation of a 4-kb DNA fragment containing the cytochrome P450(cin) gene (cinA). Sequencing revealed three open reading frames that were identified on the basis of sequence homology as a cytochrome P450, an NADPH-dependent flavodoxin/ferrodoxin reductase, and a flavodoxin. This arrangement suggests that P450(cin) may be the first isolated P450 to use a flavodoxin as its natural redox partner. Sequencing also identified the unprecedented substitution of a highly conserved, catalytically, important active site threonine with an asparagine residue. The P450 gene was subcloned and heterologously expressed in Escherichia coli at similar to2000 nmol/liter of original culture, and purification was achieved by standard protocols. Postulating the native E. coli flavodoxin/flavodoxin reductase system might mimic the natural redox partners of P450,in, it was expressed in E. coli in the presence of cineole 1. A product was formed in vivo that was tentatively identified by gas chromatography-mass spectrometry as 2-hydroxycineole 2. Examination of P450(cin) by UV-visible spectroscopy revealed typical spectra characteristic of P450s, a high affinity for cineole 1 (K-D = 0.7 mum), and a large spin state change of the heme iron associated with binding of cineole 1. These facts support the hypothesis that cineole 1 is the natural substrate for this enzyme and that P450(cin) catalyzes the initial monooxygenation of cineole 1 biodegradation. This constitutes the first characterization of an enzyme involved in this pathway.
Resumo:
The relationships between catalytic activity of cytochrome P450 2A6 (CYP2A6), polymorphism of CYP2A6 gene, gender and levels of body iron stores were analysed in a sample group of 202 apparently healthy Thais, aged 1947 years. Eleven individuals were found to have high activity of CYP2A6, judged by the relatively large amounts (11.2-14.6 mg) of 7-hydroyxcoumarin (7-OHC) excreted 3 h following administration of 15 mg of coumarin. Ten individuals, however, did not excrete any 7-OHC. Of these 10, four were found to have no CYP2A6 gene (whole gene deletion; CYP2A6*4 allele). The frequency of the CYP2A6 alleles; *1A, *1B and *4 in the whole sample group was 52, 40 and 8% while the frequency of the CYP2A6 gene types; *1A/* 1A, *1A/* 1B, *1B/* 1B, *1A/* 4, *1BI* 4, *4/* 4 was 29, 41, 16, 7, 5 and 2%. Subjects having CYP2A6* 1A/* 1B gene-type group were found to have higher rates of coumarin 7-hydroxylation compared with those of the CYP2A6* 1B/* 1B and CYP2A6* 1A/* 4 gene types. The inter-individual variability in CYP2A6 catalytic activity was therefore attributed in part to the CYP2A6 genetic polymorphism. Variation in CYP2A6 activity in this sample group was not associated with gender but, interestingly, it did show an inverse association with plasma ferritin; an indicator of body iron stores. Higher rates of coumarin 7-hydroxylation were found in individuals with low body iron stores (plasma ferritin < 20 μg/l) compared with subjects having normal body iron store status. Subjects (n = 16) with iron overload (plasma ferritin > 300 mug/l) also tended to have elevated rates of coumarin 7-hydroxylation. These results suggest an increased CYP2A6 expression in subjects who have excessive body iron stores. Further investigations into the underlying factors that may lead to increased expression of CYP2A6 in association with abnormal body iron stores are currently in progress in our laboratory. Pharmacogenetics 12:241-249 (C) 2002 Lippincott Williams Wilkins.
Resumo:
Tamoxifen is a major drug used for adjuvant chemotherapy of breast cancer; however, its use has been associated with a small but significant increase in risk of endometrial cancer. In rats, tamoxifen is a hepatocarcinogen, and DNA adducts have been observed in both rat and human tissues. Tamoxifen has been shown previously to be metabolized to reactive products that have the potential to form protein and DNA adducts. Previous studies have suggested a role for P450 3A4 in protein adduct formation in human liver microsomes, via a catechol intermediate; however, no clear correlation was seen between P450 3A4 content of human liver microsomes and adduct formation. In the present study, we investigated the P450 forms responsible for covalent drug-protein adduct formation and the possibility that covalent adduct formation might occur via alternative pathways to catechol formation. Recombinant P450 3A4 catalyzed adduct formation, and this correlated with the level of uncoupling in the P450 incubation, consistent with a role of reactive oxygen species in potentiating adduct formation after enzymatic formation of the catechol metabolite. Whereas P450s 1AI, 2D6, and 3A5 generated catechol metabolite, no covalent adduct formation was observed with these forms. By contrast, P450 2136, 2C19, and rat liver microsomes catalyzed drug-protein adduct formation but not catechol formation. Drug protein adducts formed specifically with P450 3A4 in incubations using membranes isolated from bacteria expressing P450 3A4 and reductase, as well as in reconstitutions of purified 3A4, suggesting that the electrophilic species reacted preferentially with the P450 enzymes concerned.
Resumo:
The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.
Resumo:
Our groups have had a long-term interest in utilizing bacterial systems in the characterization of bioactivation and detoxication reactions catalyzed by cytochrome P450 (P450) and glutathione transferase (GST) enzymes. Bacterial systems remain the first choice for initial screens with new chemicals and have advantages, including high-throughput capability. Most human P450s of interest in toxicology have been readily expressed in Escherichia coli with only minor sequence modification. These enzymes can be readily purified and used in assays of activation of chemicals. Bicistronic systems have been developed in order to provide the auxiliary NADPH-P450 reductase. Alternative systems involve these enzymes expressed together within bacteria. In one approach, a lac selection system is used with E. coli and has been applied to the characterization of inhibitors of P450s 1A2 and 1131, as well as in basic studies involving random mutagenesis. Another approach utilizes induction of the SOS (umu) response in Salmonella typhimurium, and systems have now been developed with human P450s 1A1, 1A2, 1B1, 2C9, 2D6, 2E1, and 3A4, which have been used to report responses from heterocyclic amines. S. typhimurium his reporter systems have also been used with GSTs, first to demonstrate the role of rat GST 5-5 in the activation of dihalomethanes. These systems have been used to compare these GSTs with regard to activation of dihaloalkanes and potential toxicity. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Electrochemistry of bacterial cytochrome P450cin (CYP176A) reveals that, unusually, substrate binding does not affect the heme redox potential, although a marked pH dependence is consistent with a coupled single electron/single proton transfer reaction in the range 6 < pH < 10.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Genética Molecular e Biomedicina
Resumo:
The pharmacogenetics of antimalarial agents are poorly known, although the application of pharmacogenetics might be critical in optimizing treatment. This population pharmacokinetic-pharmacogenetic study aimed at assessing the effects of single nucleotide polymorphisms (SNPs) in cytochrome P450 isoenzyme genes (CYP, namely, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5) and the N-acetyltransferase 2 gene (NAT2) on the pharmacokinetics of artemisinin-based combination therapies in 150 Tanzanian patients treated with artemether-lumefantrine, 64 Cambodian patients treated with artesunate-mefloquine, and 61 Cambodian patients treated with dihydroartemisinin-piperaquine. The frequency of SNPs varied with the enzyme and the population. Higher frequencies of mutant alleles were found in Cambodians than Tanzanians for CYP2C9*3, CYP2D6*10 (100C → T), CYP3A5*3, NAT2*6, and NAT2*7. In contrast, higher frequencies of mutant alleles were found in Tanzanians for CYP2D6*17 (1023C → T and 2850C → T), CYP3A4*1B, NAT2*5, and NAT2*14. For 8 SNPs, no significant differences in frequencies were observed. In the genetic-based population pharmacokinetic analyses, none of the SNPs improved model fit. This suggests that pharmacogenetic data need not be included in appropriate first-line treatments with the current artemisinin derivatives and quinolines for uncomplicated malaria in specific populations. However, it cannot be ruled out that our results represent isolated findings, and therefore more studies in different populations, ideally with the same artemisinin-based combination therapies, are needed to evaluate the influence of pharmacogenetic factors on the clearance of antimalarials.
Resumo:
CYP3A4, CYP3A5 and CYP3A7 are hepatic enzymes that metabolize about 50% of drugs on the market, with a large overlap in their specificities. We investigated the genetic bases that contribute to the variation of CYP3A activity. We phenotyped 251 individuals from two independent studies (182 patients treated with methadone and 69 patients with clozapine) for CYP3A activity using the midazolam phenotyping test and genotyped them for CYP3A4, CYP3A5, and CYP3A7 genetic variants, including the single nucleotide polymorphism (SNP) rs4646437C>T in intron 7 of CYP3A4. Owing to the fact that CYP enzymes require electron transfer through the P450 oxidoreductase (POR), and functional impairment has been shown for the POR*28 SNP, this polymorphism was also analysed. We show that CYP3A4, CYP3A5 and CYP3A7 genotypes, including the SNP rs4646437C>T, do not reflect the inter-individual variability of CYP3A activity (P>0.1). In contrast, POR*28 TT genotype presents a 1.6-fold increase in CYP3A activity compared with POR*28C carriers (n = 182, P = 0.004). This finding was replicated in the second independent dataset (n = 69, P = 0.04). The SNP POR*28 seems to be a better genetic marker of the variability of total CYP3A activity in vivo than CYP3A4, CYP3A5 and CYP3A7 genetic variants.
Resumo:
BACKGROUND: An LC-MS/MS method has been developed for the simultaneous quantification of P-glycoprotein (P-gp) and cytochrome P450 (CYP) probe substrates and their Phase I metabolites in DBS and plasma. P-gp (fexofenadine) and CYP-specific substrates (caffeine for CYP1A2, bupropion for CYP2B6, flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam for CYP3A4) and their metabolites were extracted from DBS (10 µl) using methanol. Analytes were separated on a reversed-phase LC column followed by SRM detection within a 6 min run time. RESULTS: The method was fully validated over the expected clinical concentration range for all substances tested, in both DBS and plasma. The method has been successfully applied to a PK study where healthy male volunteers received a low dose cocktail of the here described P-gp and CYP probes. Good correlation was observed between capillary DBS and venous plasma drug concentrations. CONCLUSION: Due to its low-invasiveness, simple sample collection and minimal sample preparation, DBS represents a suitable method to simultaneously monitor in vivo activities of P-gp and CYP.
Resumo:
Two published case reports showed that addition of risperidone (1 and 2 mg/d) to a clozapine treatment resulted in a strong increase of clozapine plasma levels. As clozapine is metabolized by cytochrome P450 isozymes, a study was initiated to assess the in vivo interaction potential of risperidone on various cytochrome P450 isozymes. Eight patients were phenotyped with dextromethorphan (CYP2D6), mephenytoin (CYP2C19), and caffeine (CYP1A2) before and after the introduction of risperidone. Before risperidone, all eight patients were phenotyped as being extensive metabolizers of CYP2D6 and CYP2C19. Risperidone at dosages between 2 and 6 mg/d does not appear to significantly inhibit CYP1A2 and CYP2C19 in vivo (median plasma paraxanthine/caffeine ratios before and after risperidone: 0.65, 0.69; p = 0.89; median urinary (S)/(R) mephenytoin ratios before and after risperidone:0.11, 0.12; p = 0.75). Although dextromethorphan metabolic ratio is significantly increased by risperidone (median urinary dextromethorphan/dextrorphan ratios before and after risperidone: 0.010, 0.018; p = 0.042), risperidone can be considered a weak in vivo CYP2D6 inhibitor, as this increase is modest and none of the eight patients was changed from an extensive to a poor metabolizer. The reported increase of clozapine concentrations by risperidone can therefore not be explained by an inhibition of CYP1A2, CYP2D6, CYP2C19 or by any combination of the three.