848 resultados para Oxygen dissociation curve
Resumo:
Linear- and unimodal-based inference models for mean summer temperatures (partial least squares, weighted averaging, and weighted averaging partial least squares models) were applied to a high-resolution pollen and cladoceran stratigraphy from Gerzensee, Switzerland. The time-window of investigation included the Allerød, the Younger Dryas, and the Preboreal. Characteristic major and minor oscillations in the oxygen-isotope stratigraphy, such as the Gerzensee oscillation, the onset and end of the Younger Dryas stadial, and the Preboreal oscillation, were identified by isotope analysis of bulk-sediment carbonates of the same core and were used as independent indicators for hemispheric or global scale climatic change. In general, the pollen-inferred mean summer temperature reconstruction using all three inference models follows the oxygen-isotope curve more closely than the cladoceran curve. The cladoceran-inferred reconstruction suggests generally warmer summers than the pollen-based reconstructions, which may be an effect of terrestrial vegetation not being in equilibrium with climate due to migrational lags during the Late Glacial and early Holocene. Allerød summer temperatures range between 11 and 12°C based on pollen, whereas the cladoceran-inferred temperatures lie between 11 and 13°C. Pollen and cladocera-inferred reconstructions both suggest a drop to 9–10°C at the beginning of the Younger Dryas. Although the Allerød–Younger Dryas transition lasted 150–160 years in the oxygen-isotope stratigraphy, the pollen-inferred cooling took 180–190 years and the cladoceran-inferred cooling lasted 250–260 years. The pollen-inferred summer temperature rise to 11.5–12°C at the transition from the Younger Dryas to the Preboreal preceded the oxygen-isotope signal by several decades, whereas the cladoceran-inferred warming lagged. Major discrepancies between the pollen- and cladoceran-inference models are observed for the Preboreal, where the cladoceran-inference model suggests mean summer temperatures of up to 14–15°C. Both pollen- and cladoceran-inferred reconstructions suggest a cooling that may be related to the Gerzensee oscillation, but there is no evidence for a cooling synchronous with the Preboreal oscillation as recorded in the oxygen-isotope record. For the Gerzensee oscillation the inferred cooling was ca. 1 and 0.5°C based on pollen and cladocera, respectively, which lies well within the inherent prediction errors of the inference models.
Resumo:
Nearly continuous cores of Quaternary fine-grained sediments with distinct dark-light colored cycles were recovered from Sites 794, 795, and 797 in the basinal parts of the Japan Sea during Leg 127. A comparison of gray value (darkness) profiles supplemented by visual inspection of core photographs between sites indicated that most of the dark and light layers were correlatable between sites, and that two of the dark layers lie close to adjacent marker ash layers. These observations indicate that deposition of dark and light layers resulted from basin-wide synchronous events. In order to understand the origin of these dark-light cycles, petrographical, mineralogical, compositional, and paleontological studies were carried out on closely spaced samples from the upper Quaternary sediments recovered from Site 797. Age model was constructed based on comparison between variation in diatom abundance and the standard oxygen isotope curve of Imbrie et al. (1984), the latter was interpolated between the five age controlled levels established at Site 797. The two curves show similar patterns which enabled us to "tune" the sediment ages to the oxygen isotope stages. We have to use variation in diatom abundance as a substitute for oxygen isotope curve since oxygen isotopic data are not available at the studied sites. Bottom water oxygenation conditions were estimated based on two criteria: (1) the degree of lamina preservation and (2) the ratio of Corg to Stot. The surface water productivity was deduced from the Corg and biogenic silica content. Results suggest that the bottom water oxygenation level and the surface water productivity varied significantly in response to the glacial-interglacial cycles. Glacio-eustatic sea-level changes and subsequent changes in water circulation in the Japan Sea appear to have been responsible for these variations and consequent changes in sediment composition throughout the Quaternary.
Resumo:
During ODP Leg 166, the recovery of cores from a transect of drill sites across the Bahamas margin from marginal to deep basin environments was an essential requirement for the study of the response of the sedimentary systems to sea-level changes. A detailed biostratigraphy based on planktonic foraminifera was performed on ODP Hole 1006A for an accurate stratigraphic control. The investigated late middle Miocene-early Pliocene sequence spans the interval from about 12.5 Ma (Biozone N12) to approximately 4.5 Ma (Biozone N19). Several bioevents calibrated with the time scale of Berggren et al. (1995a,b) were identified. The ODP Site 1006 benthic oxygen isotope stratigraphy can be correlated to the corresponding deep-water benthic oxygen isotope curve from ODP Site 846 in the Eastern Equatorial Pacific (Shackleton et al., 1995. Proc. ODP Sci. Res. 138, 337-356), which was orbitally tuned for the entire Pliocene into the latest Miocene at 6.0 Ma. The approximate stratigraphic match of the isotopic signals from both records between 4.5 and 6.0 Ma implies that the paleoceanographic signal from the Bahamas is not simply a record of regional variations but, indeed, represents glacio-eustatic fluctuations. The ODP Site 1006 oxygen and carbon isotope record, based on benthic and planktonic foraminifera, was used to define paleoceanographic changes on the margin, which could be tied to lithostratigraphic events on the Bahamas carbonate platform using seismic sequence stratigraphy. The oxygen isotope values show a general cooling trend from the middle to late Miocene, which was interrupted by a significant trend towards warmer sea-surface temperatures (SST) and associated sea-level rise with decreased ice volume during the latest Miocene. This trend reached a maximum coincident with the Miocene/Pliocene boundary. An abrupt cooling in the early Pliocene then followed the warming which continued into the earliest Pliocene. The late Miocene paleoceanographic evolution along the Bahamas margin can be observed in the ODP Site 1006 delta13C values, which support other evidence for the beginning of the closure of the Panama gateway at 8 Ma followed by a reduced intermediate water supply of water from the Pacific into the Caribbean at about 5 Ma. A general correlation of lower sedimentation rates with the major seismic sequence boundaries (SSBs) was observed. Additionally, the SSBs are associated with transitions towards more positive oxygen isotope excursions. This observed correspondence implies that the presence of a SSB, representing a density impedance contrast in the sedimentary sequence, may reflect changes in the character of the deposited sediment during highstands versus those during lowstands. However, not all of the recorded oxygen isotope excursions correspond to SSBs. The absence of a SSB in association with an oxygen isotope excursion indicates that not all oxygen isotope sea-level events impact the carbonate margin to the same extent, or maybe even represent equivalent sea-level fluctuations. Thus, it can be tentatively concluded that SSBs produced on carbonate margins do record sea-level fluctuations but not every sea-level fluctuation is represented by a SSB in the sequence stratigraphic record.
Resumo:
Core T89-40, eastern Walvis Ridge between the subtropical gyre and Benguela coastal upwelling system, contains three types of levels of abundant left-coiled Neogloboquadrina pachyderma, a cold, eutrophic species, next to subtropical species. Type A peaks (362, 110 and 53-43 ky BP) are accompanied with high percentages of other eutrophic species. They are attributed to intensified upwelling in the Northern Benguela region. Type B peaks (129 and 92 ky BP) are accompanied by moderate (<48%) contributions of other eutrophic species and increased numbers of subtropical species. These suggest intensified upwelling in the Northern Benguela cells and may reflect increased seasonal contrasts between the winter upwelling and the subtropical summer conditions. The highest C-peaks, up to 38%, are associated with strongly reduced percentages of other eutrophic species and with abundant subtropical species (Marine Isotopic Stage 11.3 (401 ky) and 9.3 (326 ky)). The subtropical species preceeded the C-peaks by ca 8 ky. We argue that the C-peaks were not produced by local reproduction but expatriated from the Northern Benguela upwelling cells. Here more nutrient-rich waters may have produced a mono-specific Neogloboquadrina pachyderma (left) fauna during strong polewards shifts of the frontal systems in the South Atlantic, which could have been transported 700 km offshore to the core location, unadmixed with eutrophic species from the surrounding waters. We propose meandering shelf-edge jets, strong contour jets, as a mechanism for the transport. The timing of the C-peaks and associated subtropical peaks agrees with the known precessional cyclicity of the SE Atlantic front movements and zonality of the trade winds, which supports the shelf-edge jet hypothesis.
Resumo:
We have carried out a multiphase analysis of samples from ODP Site 177-1092, Meteor Rise, subantarctic South Atlantic. Samples were analyzed for ice-rafted debris (IRD [see Table T1]) and stable isotopes from benthic foraminifera [see Murphy et al., 2002, doi:10.1016/S0031-0182(01)00495-3]. Both analyses were performed on the same samples. Additional work was performed to identify the paleomagnetic stratigraphy. The analyzed samples range in age from about 2.6(?) Ma to 4.6 Ma, a time span that saw considerable global warmth, but witnessed overall global refrigeration and the transition to truly bipolar glaciations. IRD arrived frequently during the Early and early Late Pliocene, but only as 'background rafting' (occasional grains per sample). The first identifiable IRD above background rafting is associated with marine isotope stage (MIS) KM4 (~3.18 Ma). Successive IRD peaks become larger, the same pattern as noted at nearby Site 114-704. A very large peak near the top of the record, approximately 2.8 Ma, is considered to represent a hiatus. Peaks below 51.3 meters composite depth (mcd) coincide with positive excursions of the oxygen isotopic record, and with negative excursions of the carbon isotopic curve, a pattern also noted at Site 114-704. However, the reasonably large IRD peak at 51 mcd (tentatively identified with MIS G11) coincides with a positive excursion on the carbon isotopic curve and negative excursion on the oxygen isotopic curve. This relationship suggests a northern hemisphere interglacial, rising sea level, destabilization of the Antarctic margin, and delivery of Antarctic icebergs to the Southern Ocean. Such a mechanism has recently been suggested by Kanfoush et al. (2000, doi:10.1126/science.288.5472.1815) for latest Pleistocene stadial/interstadial oscillations. Here we suggest that such a mechanism may have been in place on glacial/interglacial time scales as early as the Late Pliocene.
Resumo:
We examine rock-magnetic, carbonate, and planktonic foraminiferal fluxes to identify climatically controlled changes of terrigenous and pelagic sedimentation at Ocean Drilling Program (ODP) Site 646 (the Labrador Sea). Terrigenous sediments are brought to the site principally by bottom currents. We use a rock-magnetic parameter sensitive to changes in magnetic mineral grain size, the ratio of anhysteretic susceptibility to low-field magnetic susceptibility (XARM/X), to monitor changes in bottom-current intensity over time, with large values of XARM/X (finer-grained magnetic minerals) indicating weaker bottom currents. A second rock-magnetic parameter, magnetic mineral accumulation rate (KaT) was used to indicate variations in terrigenous flux. Planktonic foraminiferal and carbonate accumulation rates (Pfar and CaC03ar) are used as indicators of pelagic flux. Absolute age assignments are based on correlation between the planktonic foraminiferal oxygen-isotope variations for Site 646 and the SPECMAP master oxygen-isotope curve. Cross-correlation analyses of the parameters that we studied with respect to the SPECMAP curve suggest that from oxygen-isotope stages 21 to 11, sedimentation rate, KaT, X, CaCO3ar, and Pfar were at their maximums, whereas XARM/X was at its minimum during peak interglacials (i.e., 0 k.y. lag time with respect to minimum ice volume). However, all parameters we examined lag behind minimum ice volume from stages 11 to 1, indicating a change in timing of both pelagic and terrigenous fluxes at approximately 400 k.y. BP. The negative correlation coefficient between XARM/X and the SPECMAP curve further suggest that finer-grained magnetic minerals are deposited during glacial periods, which probably reflects weaker bottom currents. The shift observed in the lag times of parameters examined with respect to the SPECMAP record is attributed to a change in significance of orbital parameters. Spectral results exhibit strong power in eccentricity (about 100 k.y.) throughout the record. Kap X, CaCO3flr, and Pfar show significant power in obliquity (about 41 k.y.), whereas XARM/X shows significant power at 73 k.y. from stages 21 to 11. The 73-k.y. period in XARM/X is near the difference tone of obliquity and eccentricity: 1/43-1/102 = 1/69. Kar and XARM/X show power only in eccentricity from stages 11 to 1. X and Pfar show significant power in precession (about 18 and 22 k.y.) whereas CaC03ar has power at 34 k.y, which could be a combination of precession and obliquity. The shift in power of orbital parameters may by attributed to the effect of the about 413-k.y. signal of eccentricity.
Resumo:
We investigated the capacity of two reptiles, an agamid lizard Pogona barbata and a chelid turtle Emydura signata, to compensate for the effects of temperature by making changes in their whole blood respiratory properties. This was accomplished by measuring the P-50 (at 10, 20 and 30 degrees C), hematocrit (Hct), haemoglobin concentration ([Hb]) and mean cell haemoglobin concentration (MCHC) in field acclimatised and laboratory acclimated individuals. The acute effect of temperature on P50 in P barbata, expressed as heat of oxygenation (Delta H), ranged from -16.8 +/- 1.84 to -28.5 +/- 2.73 kJ/mole. P-50 of field acclimatised P barbata increased significantly from early spring to summer at the test temperatures of 20 degrees C (43.1 +/- 1.2 to 48.8 +/- 2.1 mmHg) and 30 degrees C (54.7 +/- 1.2 to 65.2 +/- 2.3 mmHg), but showed no acclimation under laboratory conditions. For E. signata, Delta H ranged from -31.1 +/- 6.32 to -48.2 +/- 3.59 kJ/mole. Field acclimatisation and laboratory acclimation of P-50 did not occur. However, in E. signata, there was a significant increase in [Hb] and MCHC from early spring to summer in turtles collected from the wild (1.0 +/- 0.1 to 1.7 +/- 0.2 mmol/L and 4.0 +/- 0.3 to 6.7 +/- 0.7 mmol/L, respectively). (C) 2005 Published by Elsevier Inc.
Resumo:
Five long piston cores collected from different subbasins of the Aegean Sea constitute the primary source of data for this PhD thesis. This study is the first to document a continuous paleoceanographic and paleoclimatic record of the Aegean Sea since the last interglacial. The chronostratigraphic reconstructions of the cored sediments based on organic carbon contents, stratigraphic position of known ash layers and oxygen isotopic curve matching collectively demonstrate the presence of sapropel S1 and MISS sapropels S3, S4 and S5 in the Aegean Sea subbasins. Generally, the organic carbon (TOC wt%) contents in sapropels range between 0.8% and 2% with highest concentrations of 9-13% in sapropels S4 and S5. Average sedimentation rates range between 4.7 and 11.8 cmlka with highest rates being observed in Euboea and North Ikaria basins (9.8 and 11.8 cm lka, respectively). The timing of the onset of sapropels S4 and S5 mostly predate those in the eastern Mediterranean with ages ranging from 106.4-105.6 and 128.6-128.4 ka BP, respectively. On the other hand, the initiation of the onset of sapropel S3 (i.e., 83.2-80.4 ka BP) seems to agree with its Mediterranean counterparts, which highlights the heterogeneity of the Aegean Sea subbasins in terms of rapid vs. lagged response to changing climatic conditions. The sapropel initiations appear to be synchronous across the Aegean Sea; whereas, the terminations display a wider temporal variability implying that the cessation of sapropels is controlled both by the amplitude of paleoclimatic changes and the physiography/location ofthe subbasins. Quantitative variations in the planktonic faunal assemblages exhibit a sequence of bioevents during the last -130,000 years which allow identification of four major biozones. The distributional patterns of the most significant taxa demonstrate similar trends among all core localities suggesting that the major changes in the planktonic foraminifera assemblages have taken place rather synchronously in the Aegean Sea. Sapropels S3, S4 and S5 were deposited under similar hydrographic conditions during which a distinct deep chlorophyll maximum (DCM) layer was established. This situation points to a stratified water column and increased export productivity during times of sapropel formation. On the other hand, the faunal contrast between Sl and older sapropels indicates that the former was developed in the absence of a DCM layer, lacking a deep phytoplankton assemblage. Under such conditions, oxygen advection via intermediate water flow must have been significantly reduced which implies significant stagnation. Sapropels are interpreted to have been deposited under normal marine conditions with temporary establishment of semi-euxinic bottom water conditions. Both marine and terrestrial organic matter contributed equally to MISS sapropels. In addition, organic carbon isotopic values across sapropels are more depleted than those in the eastern Mediterranean which, in tum, suggests enhanced riverine input during their deposition. Primary productivity calculations show that, particularly for sapropels with very high TOC values, both preservation and increased productivity are imperative in order to deposit sapropels with very high organic carbon contents (i.e., up to 13%).
Resumo:
Through an interplay between scanning tunneling microscopy experiments and density functional theory calculations, we determine unambiguously the active surface site responsible for the dissociation of water molecules adsorbed on rutile TiO2(110). Oxygen vacancies in the surface layer are shown to dissociate H2O through the transfer of one proton to a nearby oxygen atom, forming two hydroxyl groups for every vacancy. The amount of water dissociation is limited by the density of oxygen vacancies present on the clean surface exclusively. The dissociation process sets in as soon as molecular water is able to diffuse to the active site.
Resumo:
The adsorption of water and coadsorption with oxygen on Rh{111} under ultrahigh vacuum conditions was studied using synchrotron-based photoemission and photoabsorption spectroscopy. Water adsorbs intact on the clean surface at temperatures below 154 K. Irradiation with x-rays, however, induces fast dissociation and the formation of a mixed OH+H(2)O layer indicating that the partially dissociated layer is thermodynamically more stable. Coadsorption of water and oxygen at a coverage below 0.3 monolayers has a similar effect, leading to the formation of a hydrogen-bonded network of water and hydroxyl molecules at a ratio of 3:2. The partially dissociated layers are more stable than chemisorbed intact water with the maximum desorption temperatures up to 30 K higher. For higher oxygen coverage, up to 0.5 monolayers, water does not dissociate and an intact water species is observed above 160 K, which is characterized by an O 1s binding energy 0.6 eV higher than that of chemisorbed water and a high desorption temperature similar to the partially dissociated layer. The extra stabilization is most likely due to hydrogen bonds with atomic oxygen.
Resumo:
Platinum is one of the most common coatings used to optimize mirror reflectivity in soft X-ray beamlines. Normal operation results in optics contamination by carbon-based molecules present in the residual vacuum of the beamlines. The reflectivity reduction induced by a carbon layer at the mirror surface is a major problem in synchrotron radiation sources. A time-dependent photoelectron spectroscopy study of the chemical reactions which take place at the Pt(111) surface under operating conditions is presented. It is shown that the carbon contamination layer growth can be stopped and reversed by low partial pressures of oxygen for optics operated in intense photon beams at liquidnitrogen temperature. For mirrors operated at room temperature the carbon contamination observed for equivalent partial pressures of CO is reduced and the effects of oxygen are observed on a long time scale.
Resumo:
Tässä työssä on tutkittu kuparin (510)-askelpinnan reaktiivisuutta käyttäen apuna kvanttimekaanisia ab initio laskentamenetelmiä. Tutkimus on toteutettu laskemalla happiatomin adsorptioenergia ja tilatiheys erilaisissa potentiaalisissa adsorptiopaikoissa pinnalla. Myös happimolekyylin adsorptiota ja hajoamista ontarkasteltu laskemalla pintaa lähestyvälle molekyylille potentiaalienergiapintoja. Energiapintojen tuloksia on myös täydennetty kvanttimekaanisilla molekyylidynamiikkalaskuilla. Metallisia askelpintoja pidetään yleisesti sileitä pintoja reaktiivisempina happea kohtaan, johtuen askeleen reunan pienentävästä vaikutuksesta molekyylin hajoamisen tiellä olevaan energiavaliin. On kuitenkin olemassa myös tuloksia, jotka osoittavat hapen tarttumisprosessin olevan hallitseva juuri terassialueella, askeleen reunan sijasta. Tässä työssä on todettu hapen adsorboituvan Cu(510)-pinnalla tehokkaimmin juuri terassilla olevaan hollow-paikkaan. Myös adsorptioenergiat ovat tällä pinnalla pienempiä kuin sileällä (100)-pinnalla. Potentiaalienergiapintojen perusteella Cu(510)-pinnan todetaan myös olevan vähemmän reaktiivinen kuin askelpintojen yleisesti odotetaan olevan, vaikka askeleen reunan todetaankin pienentävän happiatominhajoamisen esteenä olevaa energiavallia.
Resumo:
Kuparipinnan hapettuminen on viimevuosina ollut suosittu tutkimuskohde materiaalitieteissä kuparin laajan teollisuuskäytön vuoksi. Teollisuussovellusten, kuten suojaavien pintaoksidien kehittäminen vaatii kuitenkin syvällistä tuntemusta hapettumisprosessista ja toisaalta myös normaaliolosuhteissa materiaalissa esiintyvien hilavirheiden vaikutuksesta siihen. Tässä työssä keskitytäänkin tutkimaan juuri niitä mekanismeja, joilla erilaiset pintavirheet ja porrastettu pintarakenne vaikuttavathapen adsorptioprosessiin kuparipinnalla. Tutkimus on tehty käyttämällä laskennallisia menetelmiä sekä VASP- ja SIESTA-ohjelmistoja. Työssätutkittiin kemiallisia ja rakenteellisia virheitä Cu(100)-pinnalla, joka on reaktiivisin matalanMillerin indeksin pinta ja porrastetun pinnan tutkimuksessa käytettiin Cu(211)-pintaa, joka puolestaan on yksinkertainen, stabiili ja aiemmissa tutkimuksissa usein käytetty pintarakenne. Työssä tutkitut hilavirheet, adatomit, vähentävät molekyylin dissosiaatiota kuparipinnalla, kun taas vakanssit toimivat dissosiaation keskuksina. Kemiallisena epäpuhtautena käytetty hopeakerros ei estä kuparin hapettumista, sillä happi aiheuttaa mielenkiintoisen segregaatioilmiön, jossa hopeatyöntyy syvemmälle pinnassa jättäen kuparipinnan suojaamattomaksi. Porrastetulla pinnalla (100)-hollow on todennäköisin paikka molekyylin dissosiaatiolle, kun taas portaan bridge-paikka on suotuisin molekulaariselle adsorptiolle. Lisäksi kuparin steppipinnan todettiin olevan reaktiivisempi kuin tasaiset kuparipinnat.
Time-resolved gas-phase kinetic and quantum chemical studies of the reaction of silylene with oxygen
Resumo:
Time-resolved kinetic studies of the reaction of silylene, SiH2, generated by laser flash photolysis of phenylsilane, have been carried out to obtain rate constants for its bimolecular reaction with O-2. The reaction was studied in the gas phase over the pressure range 1-100 Torr in SF6 bath gas, at five temperatures in the range 297-600 K. The second order rate constants at 10 Torr were fitted to the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-11.08 +/- 0.04) + (1.57 +/- 0.32 kJ mol(-1))/RT ln10 The decrease in rate constant values with increasing temperature, although systematic is very small. The rate constants showed slight increases in value with pressure at each temperature, but this was scarcely beyond experimental uncertainty. From estimates of Lennard-Jones collision rates, this reaction is occurring at ca. 1 in 20 collisions, almost independent of pressure and temperature. Ab initio calculations at the G3 level backed further by multi-configurational (MC) SCF calculations, augmented by second order perturbation theory (MRMP2), support a mechanism in which the initial adduct, H2SiOO, formed in the triplet state (T), undergoes intersystem crossing to the more stable singlet state (S) prior to further low energy isomerisation processes leading, via a sequence of steps, ultimately to dissociation products of which the lowest energy pair are H2O + SiO. The decomposition of the intermediate cyclo-siladioxirane, via O-O bond fission, plays an important role in the overall process. The bottleneck for the overall process appears to be the T -> S process in H2SiOO. This process has a small spin orbit coupling matrix element, consistent with an estimate of its rate constant of 1 x 10(9) s(-1) obtained with the aid of RRKM theory. This interpretation preserves the idea that, as in its reactions in general, SiH2 initially reacts at the encounter rate with O-2. The low values for the secondary reaction barriers on the potential energy surface account for the lack of an observed pressure dependence. Some comparisons are drawn with the reactions of CH2 + O-2 and SiCl2 + O-2.
Resumo:
Using the I : 2 condensate of benzil dihydrazone and 2-acetylpyridine as the ligand L, two complexes of zinc, [ZnL(CH3COO)]PF6 (1) and [ZnL(H2O)CIO4]CIO4 H2O (2), are synthesised from Zn(CH3COO)(2).2H(2)O and Zn(CIO4)(2).6H(2)O, respectively. From X-ray crystallography, both the complexes are found to be single helical with the metal in distorted octahedral N4O2 environment. In 1, the two oxygen atoms come from the bidentate acetate while 2 is a monoaqua complex with a perchlorate anion bound to the metal in monodentate fashion. The perchlorate in 2 is not at all weakly bound [Zn-O(perchlorate) 2.256(4) A]. Still in acetonitrile solution, the coordinated perchlorate ion dissociates upon deprotonation [reaction (i)].