998 resultados para Oxygen carrier


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this study was to compare the effects of 3 different fluid types for resuscitation after experimentally induced hemorrhagic shock in anesthetized chickens and to evaluate partial pressures of carbon dioxide measured in arterial blood (Paco2), with a transcutaneous monitor (TcPco2), with a gastric intraluminal monitor (GiPco2), and by end tidal measurements (Etco2) under stable conditions and after induced hemorrhagic shock. Hemorrhagic shock was induced in 40 white leghorn chickens by removing 50% of blood volume by phlebotomy under general anesthesia. Birds were divided into 4 groups: untreated (control group) and treated with intravenous hetastarch (haes group), with a hemoglobin-based oxygen carrier (hemospan group), or by autotransfusion (blood group). Respiratory rates, heart rates, and systolic arterial blood pressure (SAP) were compared at 8 time points (baseline [T0]; at the loss of 10% [T10%], 20% [T20%], 30% [T30%], 40% [T40%], and 50% [T50%] of blood volume; at the end of resuscitation [RES]; and at the end of anesthesia [END]). Packed cell volume (PCV) and blood hemoglobin content were compared at 6 time points (T0, T50%, RES, and 1, 3, and 7 days after induced hemorrhagic shock). Measurements of Paco2, TcPco2, GiPco2, and Etco2 were evaluated at 2 time points (T0 and T50%), and venous lactic acid concentrations were evaluated at 3 time points (T0, T50%, and END). No significant differences were found in mortality, respiratory rate, heart rate, PCV, or hemoglobin values among the 4 groups. Birds given fluid resuscitation had significantly higher SAPs after fluid administration than did birds in the control group. In all groups, PCV and hemoglobin concentrations began to rise by day 3 after phlebotomy, and baseline values were reached 7 days after blood removal. At T0, TcPco2 did not differ significantly from Paco2, but GiPco2 and Etco2 differed significantly from Paco2. After hemorrhagic shock, GiPco2 and TcPco2 differed significantly from Paco2. The TcPco2 or GiPco2 values did not differ significantly at any time point in birds that survived or died in any of the groups and across all groups. These results showed no difference in mortality in leghorn chickens treated with fluid resuscitation after hemorrhagic shock and that the PCV and hemoglobin concentrations increased by 3 days after acute hemorrhage with or without treatment. The different CO2 measurements document changes in CO2-values consistent with poor perfusion and may prove useful for serial evaluation of responses to shock and shock treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Increasing energy demand is being met largely by fossil fuel reserves, which emit CO2, SOx gases and various other pollutants. So does the search for fuels that emit fewer pollutants and have the same energy efficiency. In this context, hydrogen (H2) has been increasingly recognized as a potential carrier of energy for the near future. This is because the H2 can be obtained by different routes and has a wide application area , in addition to having clean burning, generating only H2O as a product of combustion , and higher energy density per unit mass . The Chemical Looping Reforming process (CLR) has been extensively investigated in recent years, it is possible to regenerate the catalyst by applying cycles of reduction and oxidation. This work has as main objective to develop catalysts based on nickel and cobalt to study the reactivity of reform with chemical recycling process. The catalysts were prepared by three different methods: combustion assisted by microwave, wet impregnation and co-precipitation. All catalysts synthesized have the same amount by weight of the active phases (60% w / w). The other 40 % m/m consists in La2O3 (8% w / w), Al2O3 (30% w / w) and MgO (2%). Oxygen carriers have been named as follows: N or C, nickel or cobalt, followed by the number 3 or 6, meaning 30 to 60% of active phase in the oxide form and C, CI or CP, which means self-combustion assisted by microwave, self-combustion assisted by microwave followed by wet impregnation and co-precipitation. The oxygen carriers were then characterized by the techniques of X-ray diffraction (XRD), surface area (BET), temperature programmed reduction (TPR) and scanning electron microscopy (SEM). The characterization results showed that the different synthesis methods have led to obtaining different morphologies and structures. Redox tests using CH4 as reducing agent and sintetic air as oxidant agent was done with N6C and C6C, N6CI and C6CI and N6CP and C6CP oxygen carriers. The tests revealed different behaviors, depending on active phase and on synthesis procedure. N6C oxygen carrier produced high levels of H2. The C6CI oxygen carrier produced CO2 and H2O without carbon deposits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Palladium, platinum bimetallic catalysts supported on η-Al2O3, ZSM-5(23) and ZSM-5(80), with and without the addition of TiO2, were prepared and used for low temperature total methane oxidation (TMO). The catalysts were tested under reaction temperatures of 200-500 °C with a GHSV of 100,000 mL g-1 h-1. It was found that all four components, palladium, platinum, an acidic support and oxygen carrier were needed to achieve a highly active and stable catalyst. The optimum support being 17.5% TiO2 on ZSM-5(80) where the T10% was observed at only 200 °C. On addition of platinum, longer time on stream experiments showed no decrease in the catalyst activity over 50 h at 250 °C.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The present study is focused on developing a nanoparticle carrier for the photosensitizer protoporphyrin IX for use in photodynamic therapy. The entrapment of protoporphyrin IX (Pp IX) in silica spheres was achieved by modification of Pp IX molecules with an organosilane reagent. The immobilized drug preserved its optical properties and the capacity to generate singlet oxygen, which was detected by a direct method from its characteristic phosphorescence decay curve at near-infrared and by a chemical method using 1,3-diphenylisobenzofuran to trap singlet oxygen. The lifetime of singlet oxygen when a suspension of Pp IX-loaded particles in acetonitrile was excited at 532 nm was determined as 52 mu s, which is in good agreement with the value determined for methylene blue in acetonitrile solution under the same conditions. The Pp IX-loaded silica particles have an efficiency of singlet oxygen generation (eta Delta) higher than the quantum yield of free porphyrins. This high efficiency of singlet oxygen generation was attributed to changes on the monomer-dimer equilibrium after photosentisizer immobilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The practical number of charge carriers loaded is crucial to the evaluation of the capacity performance of carbon-based electrodes in service, and cannot be easily addressed experimentally. In this paper, we report a density functional theory study of charge carrier adsorption onto zigzag edge-shaped graphene nanoribbons (ZGNRs), both pristine and incorporating edge substitution with boron, nitrogen or oxygen atoms. All edge substitutions are found to be energetically favorable, especially in oxidized environments. The maximal loading of protons onto the substituted ZGNR edges obeys a rule of [8-n-1], where n is the number of valence electrons of the edge-site atom constituting the adsorption site. Hence, a maximum charge loading is achieved with boron substitution. This result correlates in a transparent manner with the electronic structure characteristics of the edge atom. The boron edge atom, characterized by the most empty p band, facilitates more than the other substitutional cases the accommodation of valence electrons transferred from the ribbon, induced by adsorption of protons. This result not only further confirms the possibility of enhancing charge storage performance of carbon-based electrochemical devices through chemical functionalization but also, more importantly, provides the physical rationale for further design strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heteroatom doping on the edge of graphene may serve as an effective way to tune chemical activity of carbon-based electrodes with respect to charge carrier transfer in an aqueous environment. In a step towards developing mechanistic understanding of this phenomenon, we explore herein mechanisms of proton transfer from aqueous solution to pristine and doped graphene edges utilizing density functional theory. Atomic B-, N-, and O- doped edges as well as the native graphene are examined, displaying varying proton affinities and effective interaction ranges with the H3O+ charge carrier. Our study shows that the doped edges characterized by more dispersive orbitals, namely boron and nitrogen, demonstrate more energetically favourable charge carrier exchange compared with oxygen, which features more localized orbitals. Extended calculations are carried out to examine proton transfer from the hydronium ion in the presence of explicit water, with results indicating that the basic mechanistic features of the simpler model are unchanged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a systematic study of the electronic transport properties of the metallic perovskite oxide LaNiO3-delta as a function of the oxygen stoichiometry delta (delta less than or equal to 0.14). The electrical resistivity, magnetoresistance, susceptibility, Hall effect and thermopower have been studied, All of the transport coefficients are dependent on the value of delta. The resistivity increases almost exponentially as delta increases. We relate this increase in rho to the creation of Ni2+ with square-planar coordination. We find that there is a distinct T-1.5-contribution to the resistivity over the whole temperature range. The thermopower is negative, as expected for systems with electrons as the carrier, but the Hall coefficient is positive. We have given a qualitative and quantitative explanation for the different quantities observed and their systematic variation with the stoichiometry delta.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(La0.667Ca0.333Mn1-xMO3-delta)-O-x (M = Mg, Li or Re) exhibit insulating behaviour and nonlinear current-voltage (J-E) relationship with voltage-limiting characteristics at temperatures below the ferromagnetic transition (T-c). The high current region is set in at field strengths <60 V/cm. Nonlinearity exponent, alpha in the relation J = kE(alpha) increases inversely with temperature. In presence of an external magnetic field, the J-E curves show higher current density at lower field strengths. Microstructural studies indicate that there is no segregation of secondary phases in the grain boundary regions. There is remarkable changes in p(T) as well as J-E curves with the grain size. Annealing studies in lower p(O2) atmospheres indicate that there is significant out-diffusion of oxygen ions through the grain boundary layer (GBL) regions creating oxygen vacancies in the GBL regions. The concentration of Mn4+ ions is lowered at the GBL due to oxygen vacancies, reducing the probability of hopping and resulting in insulating behaviour. Therefore an insulating barrier is introduced between two conducting grains and the carrier motion between the grains is inhibited. Thus below T-c, where sufficient increase in resistivity is observed the conduction may be arising as a result of spin dependent tunneling across the barrier. External electric field lowers the barrier height and establishes carrier transport across the barrier. Above certain field strength, barrier height diminishes significantly and thereby allowing large number of carriers for conduction, giving rise to highly nonlinear conductivity. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an alternative to the gold standard TiO2 photocatalyst, the use of zinc oxide (ZnO) as a robust candidate for wastewater treatment is widespread due to its similarity in charge carrier dynamics upon bandgap excitation and the generation of reactive oxygen species in aqueous suspensions with TiO2. However, the large bandgap of ZnO, the massive charge carrier recombination, and the photoinduced corrosion-dissolution at extreme pH conditions, together with the formation of inert Zn(OH)(2) during photocatalytic reactions act as barriers for its extensive applicability. To this end, research has been intensified to improve the performance of ZnO by tailoring its surface-bulk structure and by altering its photogenerated charge transfer pathways with an intention to inhibit the surface-bulk charge carrier recombination. For the first time, the several strategies, such as tailoring the intrinsic defects, surface modification with organic compounds, doping with foreign ions, noble metal deposition, heterostructuring with other semiconductors and modification with carbon nanostructures, which have been successfully employed to improve the photoactivity and stability of ZnO are critically reviewed. Such modifications enhance the charge separation and facilitate the generation of reactive oxygenated free radicals, and also the interaction with the pollutant molecules. The synthetic route to obtain hierarchical nanostructured morphologies and study their impact on the photocatalytic performance is explained by considering the morphological influence and the defect-rich chemistry of ZnO. Finally, the crystal facet engineering of polar and non-polar facets and their relevance in photocatalysis is outlined. It is with this intention that the present review directs the further design, tailoring and tuning of the physico-chemical and optoelectronic properties of ZnO for better applications, ranging from photocatalysis to photovoltaics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the localized charge carrier transport of two-phase composite Zn1-x Ni (x) O/NiO (0 a parts per thousand currency sign x a parts per thousand currency sign 1) using the temperature dependence of ac-resistivity rho (ac)(T) across the N,el temperature T (N) (= 523 K) of nickel oxide. Our results provide strong evidence to the variable range hopping of charge carriers between the localized states through a mechanism involving spin-dependent activation energies. The temperature variation of carrier hopping energy epsilon (h)(T) and nearest-neighbor exchange-coupling parameter J (ij)(T) evaluated from the small poleron model exhibits a well-defined anomaly across T (N). For all the composite systems, the average exchange-coupling parameter (J (ij))(AVG) nearly equals to 70 meV which is slightly greater than the 60-meV exciton binding energy of pure zinc oxide. The magnitudes of epsilon (h) (similar to 0.17 eV) and J (ij) (similar to 11 meV) of pure NiO synthesized under oxygen-rich conditions are consistent with the previously reported theoretical estimation based on Green's function analysis. A systematic correlation between the oxygen stoichiometry and, epsilon (h)(T) and J (ij)(T) is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is revealed from first-principles calculations that polarization-induced asymmetric distribution of oxygen vacancies plays an important role in the insulating behavior at p-type LaAlO3/SrTiO3 interface. The formation energy of the oxygen vacancy (V-O) is much smaller than that at the surface of the LaAlO3 overlayer, causing all the carriers to be compensated by the spontaneously formed V-O's at the interface. In contrast, at an n-type interface, the formation energy of V-O is much higher than that at the surface, and the V-O's formed at the surface enhance the carrier density at the interface. This explains the puzzling behavior of why the p-type interface is always insulating but the n-type interface can be conducting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO films are prepared on glass substrates by pulsed laser deposition (PLD) at different oxygen pressures, and the effects of oxygen pressure on the structure and optoelectrical properties of as-grown ZnO films are investigated. The results show that the crystallite size and surface roughness of the films increase, but the carrier concentration and optical energy gap E-g decrease with increasing oxygen pressure. Only UV emission is found in the photoluminescence (PL) spectra of all the samples, and its intensity increases with oxygen pressure. Furthermore, there are marked differences in structure and properties between the films grown at low oxygen pressures (0.003 and 0.2 Pa) and the films grown at high oxygen pressures (24 and 150 Pa), which is confirmed by the fact that the crystallite size and UV emission intensity markedly increase, but the carrier concentration markedly decreases as oxygen pressure increases from 0.2 to 24 Pa. These results show that the crystal quality, including the microstructural quality and stoichiometry proportion, of the prepared ZnO films improves as oxygen pressure increases, particularly from 0.2 to 24 Pa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Argon gas, as a protective environment and carrier of latent heat, has an important effect on the temperature distribution in crystals and melts. Numeric simulation is a potent tool for solving engineering problems. In this paper, the relationship between argon gas flow and oxygen concentration in silicon crystals was studied systematically. A flowing stream of argon gas is described by numeric simulation for the first time. Therefore, the results of experiments can be explained, and the optimum argon flow with the lowest oxygen concentration can be achieved. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of oxygen defects on the resistivity and mobility of silicon wafers is discussed. Grinding processes were performed on the surfaces of samples in order to obtain the information on interior defects of the samples. Spreading resistivity and Hall measurements prove that SiO(x) complexes alone result in resistivity increase and mobility decrease. Deep level transient spectroscopy experiments prove that SiO(x) complexes alone are electrically active. A mechanism of carrier scattering by electrically active SiO(x) complex is proposed to explain the changes of resistivity and mobility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new technique is reported for the rapid determination of interstitial oxygen in heavily Sb-doped silicon. This technique includes wafer thinning and low-temperature 10 K infrared measurement on highly thinned wafers. The fine structure of the interstitial oxygen absorption band around 1136 cm(-1) is obtained. Our results show that this method efficiently reduces free-carrier absorption interference, allowing a high reliability of measurement, and can be used at resistivities down to 1 x 10(-2) Omega cm for heavily Sb-doped silicon.