55 resultados para Osteocytes
Resumo:
Background: The role of osteocytes in bone structure and function remains partially unresolved. Their participation in mechanotransduction, i.e., the conversion of a physical stimulus into a cellular response, has been hypothesized. The present study was an evaluation of the osteocyte density in the peri-implant bone of immediately loaded and submerged dental implants. Methods: Fourteen male patients were included in the study; all of them were partially edentulous and needed a posterior mandibular restoration. Implants were inserted in these areas; half of the sample was loaded immediately (included in a fixed provisional prosthesis on the same day as implant surgery), whereas the other half was left to heal submerged. Fourteen implants (seven immediately loaded and seven unloaded) were retrieved with a trephine after a healing period of 8 weeks. The specimens were treated to obtain thin ground sections, and histomorphometry was used to evaluate the osteocyte index in the peri-implant bone. Results: A higher and statistically significant number of osteocytes was found in the peri-implant bone around immediately loaded implants (P=0.0081). A correlation between the percentage of bone-implant contact and osteocyte density was found for immediately loaded implants (P=0.0480) but not for submerged implants (P=0.2667). Conclusion: The higher number of osteocytes in the peri-implant bone around immediately loaded implants could be related to the functional adaptation required by the loading stimulus, which also explains the hypothesized involvement of the osteocytes in the maintenance of the bone matrix. J Periodontol 2009;80:499-504.
Resumo:
The chemical and dimensional stability associated with suitable fracture toughness and propitious tribological characteristics make silicon nitride-based ceramics potential candidates for biomedical applications, mainly as orthopedic implants. Considering this combination of properties, silicon nitride components were investigated in relation to their biocompatibility. For this study, two cylindrical implants were installed in each tibia of five rabbits and were kept in the animals for 8 weeks. During the healing time, tissue tracers were administrated in the animals so as to evaluate the bone growth around the implants. Eight weeks after the surgery, the animals were euthanized and histological analyses were performed. No adverse reactions were observed close to the implant. The osteogenesis process occurred during the entire period defined by the tracers. However, this process occurred more intensely 4 weeks after the surgery. In addition, the histological analyses showed that bone growth occurred preferentially in the cortical areas. Different kinds of tissue were identified on the implant surface, characterized by lamellar bone tissue containing osteocytes and osteons, by a noncalcified matrix containing osteoblasts, or by the presence of collagen III, which may change to collagen I or remain as a fibrous tissue. The results demonstrated that silicon nitride obtained according to the procedure proposed in this research is a biocompatible material. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Purpose: This study sought to evaluate the effect of repeated implant drilling on the immediate bone-cell viability, and to evaluate drill wear by scanning electron microscopy.Materials and Methods: The tibiae of 10 rabbits were used, divided into 5 groups (G): G1 corresponded to new drills, and G2, G3, G4, and G5 corresponded to drills used 10, 20, 30, and 40 times, respectively. The animals received 10 sequential osteotomies in each tibia. The animals were euthanized immediately after the osteotomies by perfusion with 4% formaldehyde. Samples then underwent immunohistochemistry processing for ordinal qualitative analysis of osteoprotegerin (OPG), the RANK ligant (RANKL; a tumor-related necrosis factor receptor family), and osteocalcin protein immunolabels, as detected by the immunoperoxidase method and revealed with 3,3-diaminobenzidine. Drill wear and plastic deformation were analyzed by scanning electron microscopy (SEM).Results: The proteins were expressed in osteocytes of the superior bone cortical during the 40 drillings. However, in G4 and G5, a discrete increase in the expression of RANKL was observed, when compared with OPG; this increase was statistically significant in G5 (P = .016). The SEM analysis revealed major plastic deformation and drill wear in G4 and G5.Conclusion: Based on the present methodology, it may be concluded that cell viability is preserved if a less traumatic surgical protocol is used. However, the repeated use of drills alters the protein balance as of the thirtieth perforation. (C) 2008 American Association of Oral and Maxillofacial Surgeons.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The alveolar bone is a suitable in vivo physiological model for the study of apoptosis and interactions of bone cells because it undergoes continuous, rapid and intense resorption/remodelling, during a long period of time, to accommodate the growing tooth germs. The intensity of alveolar bone resorption greatly enhances the chances of observing images of the extremely rapid events of apoptosis of bone cells and also of images of interactions between osteoclasts and osteocytes/osteoblasts/bone lining cells. To find such images, we have therefore examined the alveolar bone of young rats using light microscopy, the TUNEL method for apoptosis, and electron microscopy. Fragments of alveolar bone from young rats were fixed in Bouin and formaldehyde for morphology and for the TUNEL method. Glutaraldehyde-formaldehyde fixed specimens were processed for transmission electron microscopy. Results showed TUNEL positive round/ovoid structures on the bone surface and inside osteocytic lacunae. These structures - also stained by hematoxylin - were therefore interpreted, respectively, as osteoblasts/lining cells and osteocytes undergoing apoptosis. Osteoclasts also exhibited TUNEL positive apoptotic bodies inside large vacuoles; the nuclei of osteoclasts, however, were always TUNEL negative. Ultrathin sections revealed typical apoptotic images - round/ovoid bodies with dense crescent-like chromatin - on the bone surface, corresponding therefore to apoptotic osteoblasts/lining cells. Osteocytes also showed images compatible with apoptosis. Large osteoclast vacuoles often contained fragmented cellular material. Our results provide further support for the idea that osteoclasts internalize dying bone cells; we were however, unable to find images of osteoclasts in apoptosis. (C) 2001 Harcourt Publishers Ltd.
Resumo:
Although it is generally accepted that osteoclasts breakdown and resorb bone matrix, the possibility that they may also be able to engulf apoptotic osteoblasts/ lining cells and/or osteocytes remains controversial. Apoptosis of osteoblasts/ lining cells and/or osteocytes and interactions between these cells and osteoclasts are extremely rapid events that are difficult to observe in viva. A suitable in viva model for studying these events is the alveolar bone of young rats because it is continuously. Thus, sections of aldehyde fixed alveolar undergoing intense resorption/remodeling bone of young rats were stained by the combined terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and the tartrate-resistant acid phosphatase (TRAP) method for the simultaneous visualization of apoptotic cells and osteoclasts in the same section. The combined TUNEL and TRAP reactions, in the same section, greatly facilitated visualization of relationship between osteoclasts and apoptotic bone cells during alveolar bone remodeling. Our results showed that several TRAP-positive osteoclasts exhibited large vacuoles containing TUNEL positive apoptotic structures, probably derived from osteoblasts/lining cells and/or osteocytes. These results support the idea that alveolar bone osteoclasts are able to internalize dying apoptotic bone cells.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The purpose of this study was to compare by qualitative histology the efficacy of rigid internal fixation with titanium system and the Lacto Sorb® system in mandibular fractures in rabbits. Thirty male adult rabbits Oryctolagus cuniculus were used. Unilateral mandibular osteotomies were performed between the canine and first premolar. The animals were divided into two groups: for Group I - rigid internal fixation was performed with titanium system 1.5 mm (Synthes, Oberdorf, Switzerland), with two screws of 6 mm (bicortical) on each side of the osteotomy. For Group II-rigid internal fixation was performed with PLLA/PGA system 1.5 mm (Lacto Sorb®, WLorenz, Jacksonville, FL, USA). The histological analysis evaluated the presence of inflammatory reaction, degree of bone healing and degree of resorption of the Lacto Sorb® screws. The results of both fixation systems were similar, only with a small difference after 15 and 30 days. In Group I a faster bony healing was noted. But after 60 days, bony healing was similar in both groups. It is concluded that both PLLA/PGA and titanium plates and screws provide sufficient strength to permit mandibular bone healing. The resorption process of PLLA/PGA osteosynthesis material did not cause acute or chronic inflammatory reaction or foreign body reaction during the studied period. © 2004 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this study was to evaluate the effects of simvastatin, by oral or subcutaneous administration, on tibial defects regeneration and blood cholesterol level in rats. A surgical defect was made on the right tibia of 40 male animals assigned to 4 groups (n=10), based on two routes of administration and on the use or not of simvastatin: subcutaneous injection of simvastatin (7 mg/kg) (group AT) or only the vehicle of drug suspension (group AC), above the defect area, for 5 days; and 20 mg/kg of simvastatin macerated on water (group BT) or only water (group BC), orally, daily, during the whole observation period. The animals were sacrificed after 15 or 30 days, when blood samples were analyzed to check plasma cholesterol levels. Tibiae were removed and, after decalcification and routine laboratorial processing, histological and histomorphometrical analyses were carried out. ANOVA was used for statistical analysis at 5% signficance level. The histological and histomorphometrical analyses showed significant differences only between the experimental periods (p<0.05). Animals sacrificed after 30 days showed better bone repair (p<0.05). There was no statistically significant difference (p>0.05) for blood cholesterol levels between the groups. In conclusion, simvastatin administration either orally or subcutaneously did not improve bone repair of experimental tibial defects and did not alter blood cholesterol levels in rats.
Resumo:
BACKGROUND: Annexin 1 is a 37-kDa protein that has complex intra- and extracellular effects. To discover whether the absence of this protein alters bone development, we monitored this event in the annexin-A1 null mice in comparison with littermate wild-type controls. METHODS: Radiographic and densitometry methods were used for the assessment of bone in annexin-A1 null mice at a gross level. We used whole-skeleton staining, histological analysis, and Western blotting techniques to monitor changes at the tissue and cellular levels. RESULTS: There were no gross differences in the appendicular skeleton between the genotypes, but an anomalous development of the skull was observed in the annexin-A1 null mice. This was characterized in the newborn annexin-A1 null animals by a delayed intramembranous ossification of the skull, incomplete fusion of the interfrontal suture and palatine bone, and the presence of an abnormal suture structure. The annexin-A1 gene was shown to be active in osteocytes during this phase and COX-2 was abundantly expressed in cartilage and bone taken from annexin-A1 null mice. CONCLUSIONS: Expression of the annexin-A1 gene is important for the normal development of the skull in mice, possibly through the regulation of osteoblast differentiation and a secondary effect on the expression of components of the cPLA2-COX-2 system. © 2007 Wiley-Liss, Inc.
Resumo:
Bone decalcification is a time-consuming process. It takes weeks and preservation of the tissue structure depends on the quality and velocity of the demineralization process. In the present study, a decalcification methodology was adapted using microwaving to accelerate the decalcification of rat bone for electron microscopic analysis. The ultrastructure of the bone decalcified by microwave energy was observed. Wistar rats were perfused with paraformaldehyde and maxillary segments were removed and fixed in glutaraldehyde. Half of specimens were decalcified by conventional treatment with immersion in Warshawsky solution at 4oC during 45 days, and the other half of specimens were placed into the beaker with 20 mL of the Warshawsky solution in ice bath and thereafter submitted to irradiation in a domestic microwave oven (700 maximum power) during 20 s/350 W/±37°C. In the first day, the specimens were irradiated 9 times and stored at 40°C overnight. In the second day, the specimens were irradiated 20 times changing the solution and the ice after each bath. After decalcification, some specimens were postfixed in osmium tetroxide and others in osmium tetroxide and potassium pyroantimonate. The specimens were observed under transmission electron microscopy. The results showed an increase in the decalcification rate in the specimens activated by microwaving and a reduction of total experiment time from 45 days in the conventional method to 48 hours in the microwave-aided method.
Resumo:
The suspension of rats by the tail model is used to investigate the behavior of bone in animals unable to move around. Bone is an adaptative tissue that develops in structure and function, among other factors, in response to mechanical forces applied to it and metabolic demands that it will suffer. The absence of mechanical forces and deformation of bone that occurs causes a decrease in calcium deposition in the absence of stimuli on osteoblasts and osteocytes, favoring the action of osteoclasts, making bones weak and brittle. Therefore, the mechanical action is necessary to stimulate local bone response and thus provide growth and remodeling. The aim of this study was to evaluable by radiographic densitometry, the tail suspension for 15 and 36 days alter the bone mineral density of cervical vertebrae (C3), thoracic (T6) and lumbar (L1 and L3) of Wistar rats. Thirty Rattus norvegicus albinus, adult, male, Wistar strain, average body mass ± 350g, were divided into 3 groups: control (n = 10) - not suspended; S15 (n = 10) - suspended for 15 days and S36 (n = 10) - suspended for 36 days. For densitometric analysis vertebrae were radiographed, scanned, digitized and analyzed by the computer program ImageJ®. There was a statistically significant increase in bone mineral density in group S15, probably by the restlessness of the animals to the suspension, with a decrease in group S36, and this hypothetically is linked to the accommodation of the rats, concluding that the tail suspension altered bone mineral density in first time with a decrease over time.
Resumo:
Chronic inflammatory processes close to bone often lead to loss of bone in diseases such as rheumatoid arthritis, periodontitis, loosened joint prosthesis and tooth implants. This is mainly due to local formation of bone resorbing osteoclasts which degrade bone without any subsequent coupling to new bone formation. Crucial for osteoclastogenesis is stimulation of mononuclear osteoclast progenitors by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) which induces their differentiation along the osteoclastic lineage and the fusion to mature, multinucleated osteoclasts. M-CSF and RANKL are produced by osteoblasts/ osteocytes and by synovial and periodontal fibroblasts and the expression is regulated by pro- and anti-inflammatory cytokines. These cytokines also regulate osteoclastic differentiation by direct effects on the progenitor cells. In the present overview, we introduce the basic concepts of osteoclast progenitor cell differentiation and summarize the current knowledge on cytokines stimulating and inhibiting osteoclastogenesis by direct and indirect mechanisms. © Informa Healthcare USA, Inc.
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)