957 resultados para Organic light emitting diodes(OLEDs)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improved efficiency of organic light-emitting diodes (OLEDs) based on europium complexes have been realized by using a fluorescent dye 4-(dicyanomethylene)-2-t-butyl-6 (1,1,7,7-tetramethyljulolidyl-9-enyl))-4H-pyran (DCJTB) doping. The luminous efficiency of the devices with a fluorescent dye in the emissive layer was found to improve two times of that in devices without fluorescent dye. The devices showed pure red light, which is the characteristic emission of trivalent europium ion with a full-width at half-maximum of 3 nm. The maximum brightness and luminous efficiency reached 1200 cd/m(2) at 23 V and 7.3 cd/A (2.0 Im/w), respectively, at a current density of 0.35 mA/cm(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distributed Bragg reflectors (DBR) with different reflection wavelengths were designed, and were used to fabricate microcavity organic light-emitting diodes (OLEDs) based on tris(8-hydroxyquinoline)-aluminum (Alq(3)) as the emitter and N, N'-di(naphthalene-1-yl)-N, N'-diphenyl-benzidine (NPB) as the hole-transporting layer. The microcavity was composed of DBR dielectric mirror and metal electrode aluminum (Al) mirror. Some effects of vertical optical Fabry-Perot microcavity on spontaneous emission in OLEDs were investigated. Spectral narrowing, enhancement of emitting intensity and anglular dependence of emission were observed due to the microcavity effect. It was found experimentally that the utilization of DBR is a better method to adjust the emissive mode in the resonant cavity in OLEDs well. Thus the realization of different color light emission becomes possible by the combination of carefully designed microcavity and electroluminescent organic semiconductors in a single LED.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of novel cyclometalated iridium(III) complexes bearing 2,4-diphenylquinoline ligands with fluorinated substituent were prepared and characterized by elemental analysis, NMR and mass spectroscopy. The cyclic voltammetry, absorption, emission and electroluminescent properties of these complexes were systematically investigated. Electrochemical studies showed that the oxidation of the fluorinated complexes occurred at more positive potentials (in the range 0.57-0.69 V) than the unfluorinated complex 1 (0.42 V). In view of the energy level, the lowering of the LUMO by fluorination is significantly less than that of the HOMO. The weak and low energies absorption bands in the range of 300-600 nm are well resolved, likely associated with MLCT and (3)pi-pi* transitions. These complexes show strong orange red emission both in the solution and solid state. The emission maxima of the fluorinated complexes showed blue shift by 9, 24 and 15 nm for 2, 3 and 4, respectively, with respect to the unfluorinated analogous 1. Multilayered organic light-emitting diodes (OLEDs) were fabricated by using the complexes as dopant materials. Significantly higher performance and lower turn-on voltage were achieved using the fluorinated complexes as the emitter than that using the unfluorinated counterpart 1 under the same doping level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate high efficiency red organic light-emitting diodes (OLEDs) based on a planar microcavity comprised of a dielectric mirror and a metal Mirror. The microcavity devices emitted red light at a peak wavelength of 610 nm with a full width at half maximum (FWHM) of 25 nm in the forward direction, and an enhancement of about 1.3 factor in electroluminescent (EL) efficiency has been experimentally achieved with respect to the conventional noncavity devices. For microcavity devices with the structure of distributed Bragg reflectors (DBR)/indium-tin-oxide(ITO)/V2O5/N,N'-di(naphthalene-1-yl)-N,N'-diphenyl-benzidine(NPB)/4-(dicy-anome-thylene)-2-t-butyl-6(1,1,7,7-tetrame-thyljulolidyl-9-enyl)-4H-pyran(DCJTB):tris(8-hydroxyquinoline) aluminium (Alq(3))/Alq(3)/LiF/Al, the maximum brightness arrived at 37000 cd/m(2) at a current density of 460.0 mA/cm(2), and the current efficiency and power efficiency reach 13.7 cd/A at a current density of 0.23 mA/cm(2) and 13.3 lm/W respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ambient reflection of organic light-emitting diodes (OLEDs) is reduced by utilizing a multilayer low-reflection cathode. The low-reflection cathode structure consists of a semitransparent cathode layer, a transparent spacing layer and a high reflective layer. Metals with different optical properties, including silver (Ag) and samarium (Sm), are used as the semitransparent cathode layer, tris(8-quinolinolato) aluminium (Alq(3)) and aluminium (Al) are used as the spacing layer and high reflective layer, respectively. The incident ambient light could be reduced by the cathode structure via destructive optical interference. It is found that the Ag/Alq(3)/Al cathode shows a strong wavelength-dependent reflection. However, the Sm/Alq(3)/Al cathode demonstrates a low reflection in the whole visible range, and the resulting OLED shows a reduced luminous reflectance of 2.7% as compared to 81% for a control device with LiF/Al cathode. A further reduction to 0.9% is realized by replacing a multilayer of Alq(3)/Sm/Alq(3) for the single layer of Alq(3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel series of emitting aluminum complexes containing two 8-hydroxyquinoline ligands (q) and a phenolato ligand (p) were synthesized and characterized. Double layer organic light-emitting diodes (OLEDs) were fabricated using these complexes as luminescent layers, and strong electroluminescence (EL) was observed. It was found that their emitting wavelengths were mainly determined by the first ligands (q). Cyclic voltammograms revealed a partially irreversible n-doping process and indicated that these complexes show excellent electron-transporting ability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical and optical properties of organic light-emitting diodes (OLEDs) with a stepwise graded bipolar transport emissive layer for a better control of charge transport and recombination are presented. The graded bipolar transport layer was formed by co-evaporating a hole-transporting material N,N-'-diphenyl-N,N-'-bis(1,1(')-biphenyl)-4,4(')-diamine (NPB) and an electron-transporting/emissive material tris-(8-hydroxyquinoline) aluminum (Alq(3)) in steps, where each step has a different concentration ratio of NPB to Alq(3). Compared to a conventional heterojunction OLED, electroluminescence efficiency was enhanced by a factor of more than 1.5, whereas the turn-on voltage remained unchanged in the graded structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commercial products using organic light emitting diode (OLED) display technology have begun to appear in cell phones, mp3 players and even televisions. One key area that has allowed and will allow for this technology to continue its ascension into the flat panel display and lighting markets is materials R and D. From this perspective, recent progress in cubic silsesquioxane (SSQ) based materials may provide some new advantageous properties well suited for OLEDs. In this feature article we provide an overview of recent progress in the synthesis, characterization and implementation of SSQ-based materials with properties well suited for application in solution processable organic/polymer electronics, specifically OLEDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, fluoranthene-based derivatives with a high thermal stability were synthesized for applications in organic electroluminescent devices. The two derivatives synthesized in this study, bis(4-(7,9,10-triphenylfluoranthen-8-yl)phenyl)sulfane (TPFDPS) and 2,8-bis(7,9,10-triphenylfluoranthen-8-yl)dibenzob,d]thiophene (TPFDBT), were characterized by cyclic voltammetry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). TPFDPS exhibits a high T-g of 210 degrees C while TPFDBT is crystalline in nature. Both the derivatives are thermally stable up to 500 degrees C. The charge transport studies reveal predominant electron transport properties. Subsequently, we fabricated blue OLEDs with 2-tert-butyl-9,10-bis-(beta-naphthyl)-anthracene (TBADN) as the emitting layer to demonstrate the applications of these molecules as an electron transporting layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Engineering the position of the lowest triplet state (T-1) relative to the first excited singlet state (S-1) is of great importance in improving the efficiencies of organic light emitting diodes and organic photovoltaic cells. We have carried out model exact calculations of substituted polyene chains to understand the factors that affect the energy gap between S-1 and T-1. The factors studied are backbone dimerisation, different donor-acceptor substitutions, and twisted geometry. The largest system studied is an 18 carbon polyene which spans a Hilbert space of about 991 x 10(6). We show that for reverse intersystem crossing process, the best system involves substituting all carbon sites on one half of the polyene with donors and the other half with acceptors. (C) 2014 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we report the synthesis, characterization, and potential application of his (4- (7,9,10-triphenylfluoranthen-8-yl)pheny)sulfone (TPFDPSO2) and 2,8-bis (7,9,10-triphenylfluoranthen-8-yl) dibenzo b, d]-thiophene 5,5-dioxide (TPFDBTO2) as electron transport as well as light-emitting materials. These fluoranthene derivatives were synthesized by oxidation of their corresponding parent sulfide compounds, which were prepared via Diels-Alder reaction. These materials exhibit deep blue fluorescence emission in both solution and thin film, high photoluminescence quantum yield (PLQY), thermal and electrochemical stability over a wide potential range. Hole- and electron-only devices were fabricated to study the charge transport characteristics, and predominant electron transport property comparable with that of a well-known electron transport material, Alq(3), was observed. Furthermore, bilayer electroluminescent devices were fabricated utilizing these fluoranthene derivatives as electron transport as well as emitting layer, and device performance was compared with that of their parent sulfide molecules. The electroluminescence (EL) devices fabricated with these molecules displayed bright sky blue color emission and 5-fold improvement in external quantum efficiency (EQE) with respect to their parent compounds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, we report synthesis of symmetrically and non-symmetrically functionalized fluoranthene-based blue fluorescent molecular materials for non-doped electroluminescent devices. The solid state structure of these fluorophores has been established by single crystal X-ray diffraction analysis. Furthermore, a detailed experimental and theoretical study has been performed to understand the effect of substitution of symmetric and non-symmetric functional groups on optical, thermal and electrochemical properties of fluoranthene. These materials exhibit a deep blue emission and high PLQY in solution and solid state. The vacuum deposited, non-doped electroluminescent devices with the device structure ITO/NPD (15 nm)/CBP (15 nm)/EML (40 nm)/TPBI (30 nm)/LiF (1 nm)/Al were fabricated and characterized. A systematic shift in the peak position of EL emission was observed from sky blue to bluish-green with EL maxima from 477 nm to 490 nm due to different functional groups on the periphery of fluoranthene. In addition, a high luminance of >= 2000 cd m(-2) and encouraging external quantum efficiency (EQE) of 1.1-1.4% were achieved. A correlation of the molecular structure with device performance has been established.