997 resultados para Optimumpath forest (OPF) classifier
Resumo:
Parkinson's disease (PD) automatic identification has been actively pursued over several works in the literature. In this paper, we deal with this problem by applying evolutionary-based techniques in order to find the subset of features that maximize the accuracy of the Optimum-Path Forest (OPF) classifier. The reason for the choice of this classifier relies on its fast training phase, given that each possible solution to be optimized is guided by the OPF accuracy. We also show results that improved other ones recently obtained in the context of PD automatic identification. © 2011 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper addresses biometric identification using large databases, in particular, iris databases. In such applications, it is critical to have low response time, while maintaining an acceptable recognition rate. Thus, the trade-off between speed and accuracy must be evaluated for processing and recognition parts of an identification system. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. The existing Gauss-Laguerre Wavelet based coding scheme is used for iris encoding. The performance of the OPF and two other - Hamming and Bayesian - classifiers, is compared using small, medium, and large-scale databases. Such a comparison shows that the OPF has faster response for large-scale databases, thus performing better than the more accurate, but slower, classifiers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Majority of biometric researchers focus on the accuracy of matching using biometrics databases, including iris databases, while the scalability and speed issues have been neglected. In the applications such as identification in airports and borders, it is critical for the identification system to have low-time response. In this paper, a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), is utilized as a classifier in a pre-developed iris recognition system. The aim of this paper is to verify the effectiveness of OPF in the field of iris recognition, and its performance for various scale iris databases. This paper investigates several classifiers, which are widely used in iris recognition papers, and the response time along with accuracy. The existing Gauss-Laguerre Wavelet based iris coding scheme, which shows perfect discrimination with rotary Hamming distance classifier, is used for iris coding. The performance of classifiers is compared using small, medium, and large scale databases. Such comparison shows that OPF has faster response for large scale database, thus performing better than more accurate but slower Bayesian classifier.
Resumo:
Automatic inspection of petroleum well drilling has became paramount in the last years, mainly because of the crucial importance of saving time and operations during the drilling process in order to avoid some problems, such as the collapse of the well borehole walls. In this paper, we extended another work by proposing a fast petroleum well drilling monitoring through a modified version of the Optimum-Path Forest classifier. Given that the cutting's volume at the vibrating shale shaker can provide several information about drilling, we used computer vision techniques to extract texture informations from cutting images acquired by a digital camera. A collection of supervised classifiers were applied in order to allow comparisons about their accuracy and effciency. We used the Optimum-Path Forest (OPF), EOPF (Efficient OPF), Artificial Neural Network using Multilayer Perceptrons (ANN-MLP) Support Vector Machines (SVM), and a Bayesian Classifier (BC) to assess the robustness of our proposed schema for petroleum well drilling monitoring through cutting image analysis.
Resumo:
The research on multiple classifiers systems includes the creation of an ensemble of classifiers and the proper combination of the decisions. In order to combine the decisions given by classifiers, methods related to fixed rules and decision templates are often used. Therefore, the influence and relationship between classifier decisions are often not considered in the combination schemes. In this paper we propose a framework to combine classifiers using a decision graph under a random field model and a game strategy approach to obtain the final decision. The results of combining Optimum-Path Forest (OPF) classifiers using the proposed model are reported, obtaining good performance in experiments using simulated and real data sets. The results encourage the combination of OPF ensembles and the framework to design multiple classifier systems. © 2011 Springer-Verlag.
Resumo:
Intrusion detection systems that make use of artificial intelligence techniques in order to improve effectiveness have been actively pursued in the last decade. Neural networks and Support Vector Machines have been also extensively applied to this task. However, their complexity to learn new attacks has become very expensive, making them inviable for a real time retraining. In this research, we introduce a new pattern classifier named Optimum-Path Forest (OPF) to this task, which has demonstrated to be similar to the state-of-the-art pattern recognition techniques, but extremely more efficient for training patterns. Experiments on public datasets showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, as well as allow the algorithm to learn new attacks faster than the other techniques. © 2011 IEEE.
Resumo:
Musical genre classification has been paramount in the last years, mainly in large multimedia datasets, in which new songs and genres can be added at every moment by anyone. In this context, we have seen the growing of musical recommendation systems, which can improve the benefits for several applications, such as social networks and collective musical libraries. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for musical genre classification, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster for some applications. Experiments in two public datasets were conducted against Support Vector Machines and a Bayesian classifier to show the validity of our work. In addition, we have executed an experiment using very recent hybrid feature selection techniques based on OPF to speed up feature extraction process. © 2011 International Society for Music Information Retrieval.
Resumo:
Voice-based user interfaces have been actively pursued aiming to help individuals with motor impairments, providing natural interfaces to communicate with machines. In this work, we have introduced a recent machine learning technique named Optimum-Path Forest (OPF) for voice-based robot interface, which has been demonstrated to be similar to the state-of-the-art pattern recognition techniques, but much faster. Experiments were conducted against Support Vector Machines, Neural Networks and a Bayesian classifier to show the OPF robustness. The proposed architecture provides high accuracy rates allied with low computational times. © 2012 IEEE.
Resumo:
In this paper we shed light over the problem of landslide automatic recognition using supervised classification, and we also introduced the OPF classifier in this context. We employed two images acquired from Geoeye-MS satellite at March-2010 in the northwest (high steep areas) and north sides (pipeline area) covering the area of Duque de Caxias city, Rio de Janeiro State, Brazil. The landslide recognition rate has been assessed through a cross-validation with 10 runnings. In regard to the classifiers, we have used OPF against SVM with Radial Basis Function for kernel mapping and a Bayesian classifier. We can conclude that OPF, Bayes and SVM achieved high recognition rates, being OPF the fastest approach. © 2012 IEEE.
Resumo:
Nowadays, organizations face the problem of keeping their information protected, available and trustworthy. In this context, machine learning techniques have also been extensively applied to this task. Since manual labeling is very expensive, several works attempt to handle intrusion detection with traditional clustering algorithms. In this paper, we introduce a new pattern recognition technique called Optimum-Path Forest (OPF) clustering to this task. Experiments on three public datasets have showed that OPF classifier may be a suitable tool to detect intrusions on computer networks, since it outperformed some state-of-the-art unsupervised techniques. © 2012 IEEE.