981 resultados para Ontology Approach


Relevância:

40.00% 40.00%

Publicador:

Resumo:

La evaluación de ontologías, incluyendo diagnóstico y reparación de las mismas, es una compleja actividad que debe llevarse a cabo en cualquier proyecto de desarrollo ontológico para comprobar la calidad técnica de las ontologías. Sin embargo, existe una gran brecha entre los enfoques metodológicos sobre la evaluación de ontologías y las herramientas que le dan soporte. En particular, no existen enfoques que proporcionen guías concretas sobre cómo diagnosticar y, en consecuencia, reparar ontologías. Esta tesis pretende avanzar en el área de la evaluación de ontologías, concretamente en la actividad de diagnóstico. Los principales objetivos de esta tesis son (a) ayudar a los desarrolladores en el diagnóstico de ontologías para encontrar errores comunes y (b) facilitar dicho diagnóstico reduciendo el esfuerzo empleado proporcionando el soporte tecnológico adecuado. Esta tesis presenta las siguientes contribuciones: • Catálogo de 41 errores comunes que los ingenieros ontológicos pueden cometer durante el desarrollo de ontologías. • Modelo de calidad para el diagnóstico de ontologías alineando el catálogo de errores comunes con modelos de calidad existentes. • Diseño e implementación de 48 métodos para detectar 33 de los 41 errores comunes en el catálogo. • Soporte tecnológico OOPS!, que permite el diagnstico de ontologías de forma (semi)automática. De acuerdo con los comentarios recibidos y los resultados de los test de satisfacción realizados, se puede afirmar que el enfoque desarrollado y presentado en esta tesis ayuda de forma efectiva a los usuarios a mejorar la calidad de sus ontologías. OOPS! ha sido ampliamente aceptado por un gran número de usuarios de formal global y ha sido utilizado alrededor de 3000 veces desde 60 países diferentes. OOPS! se ha integrado en software desarrollado por terceros y ha sido instalado en empresas para ser utilizado tanto durante el desarrollo de ontologías como en actividades de formación. Abstract Ontology evaluation, which includes ontology diagnosis and repair, is a complex activity that should be carried out in every ontology development project, because it checks for the technical quality of the ontology. However, there is an important gap between the methodological work about ontology evaluation and the tools that support such an activity. More precisely, not many approaches provide clear guidance about how to diagnose ontologies and how to repair them accordingly. This thesis aims to advance the current state of the art of ontology evaluation, specifically in the ontology diagnosis activity. The main goals of this thesis are (a) to help ontology engineers to diagnose their ontologies in order to find common pitfalls and (b) to lessen the effort required from them by providing the suitable technological support. This thesis presents the following main contributions: • A catalogue that describes 41 pitfalls that ontology developers might include in their ontologies. • A quality model for ontology diagnose that aligns the pitfall catalogue to existing quality models for semantic technologies. • The design and implementation of 48 methods for detecting 33 out of the 41 pitfalls defined in the catalogue. • A system called OOPS! (OntOlogy Pitfall Scanner!) that allows ontology engineers to (semi)automatically diagnose their ontologies. According to the feedback gathered and satisfaction tests carried out, the approach developed and presented in this thesis effectively helps users to increase the quality of their ontologies. At the time of writing this thesis, OOPS! has been broadly accepted by a high number of users worldwide and has been used around 3000 times from 60 different countries. OOPS! is integrated with third-party software and is locally installed in private enterprises being used both for ontology development activities and training courses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Refinement in software engineering allows a specification to be developed in stages, with design decisions taken at earlier stages constraining the design at later stages. Refinement in complex data models is difficult due to lack of a way of defining constraints, which can be progressively maintained over increasingly detailed refinements. Category theory provides a way of stating wide scale constraints. These constraints lead to a set of design guidelines, which maintain the wide scale constraints under increasing detail. Previous methods of refinement are essentially local, and the proposed method does not interfere very much with these local methods. The result is particularly applicable to semantic web applications, where ontologies provide systems of more or less abstract constraints on systems, which must be implemented and therefore refined by participating systems. With the approach of this paper, the concept of committing to an ontology carries much more force. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper we present a new approach to ontology learning. Its basis lies in a dynamic and iterative view of knowledge acquisition for ontologies. The Abraxas approach is founded on three resources, a set of texts, a set of learning patterns and a set of ontological triples, each of which must remain in equilibrium. As events occur which disturb this equilibrium various actions are triggered to re-establish a balance between the resources. Such events include acquisition of a further text from external resources such as the Web or the addition of ontological triples to the ontology. We develop the concept of a knowledge gap between the coverage of an ontology and the corpus of texts as a measure triggering actions. We present an overview of the algorithm and its functionalities.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main idea of our approach is that the domain ontology is not only the instrument of learning but an object of examining student skills. We propose for students to build the domain ontology of examine discipline and then compare it with etalon one. Analysis of student mistakes allows to propose them personalized recommendations and to improve the course materials in general. For knowledge interoperability we apply Semantic Web technologies. Application of agent-based technologies in e-learning provides the personification of students and tutors and saved all users from the routine operations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The paper presents an ongoing effort aimed at building an electronic archive of documents issued by the Bulgarian Ministry of Education in the 40ies and 50ies of the 20th century. These funds are stored in the Archive of the Ministry of the People’s Education within the State Archival Fund of the General Department of Archives at the Council of Ministers of Bulgaria. Our basic concern is not the digitization process per se, but the subsequent organization of the archive in a clear and easily-searchable way which would allow various types of users to get access to the documents of interest to them. Here we present the variety of the documents which are stored in the archival collection, and suggestions on their electronic organization. We suggest using ontologies- based presentation of the archive. The basic benefit of this approach is the possibility to search the collection according to the stored content categories.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

* The presented work has discussed on the KDS-2003. It has corrected in compliance with remarks and requests of participants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): J.3.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Competition between Higher Education Institutions is increasing at an alarming rate, while changes of the surrounding environment and demands of labour market are frequent and substantial. Universities must meet the requirements of both the national and European legislation environment. The Bologna Declaration aims at providing guidelines and solutions for these problems and challenges of European Higher Education. One of its main goals is the introduction of a common framework of transparent and comparable degrees that ensures the recognition of knowledge and qualifications of citizens all across the European Union. This paper will discuss a knowledge management approach that highlights the importance of such knowledge representation tools as ontologies. The discussed ontology-based model supports the creation of transparent curricula content (Educational Ontology) and the promotion of reliable knowledge testing (Adaptive Knowledge Testing System).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Historically, asset management focused primarily on the reliability and maintainability of assets; organisations have since then accepted the notion that a much larger array of processes govern the life and use of an asset. With this, asset management’s new paradigm seeks a holistic, multi-disciplinary approach to the management of physical assets. A growing number of organisations now seek to develop integrated asset management frameworks and bodies of knowledge. This research seeks to complement existing outputs of the mentioned organisations through the development of an asset management ontology. Ontologies define a common vocabulary for both researchers and practitioners who need to share information in a chosen domain. A by-product of ontology development is the realisation of a process architecture, of which there is also no evidence in published literature. To develop the ontology and subsequent asset management process architecture, a standard knowledge-engineering methodology is followed. This involves text analysis, definition and classification of terms and visualisation through an appropriate tool (in this case, the Protégé application was used). The result of this research is the first attempt at developing an asset management ontology and process architecture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Image annotation is a significant step towards semantic based image retrieval. Ontology is a popular approach for semantic representation and has been intensively studied for multimedia analysis. However, relations among concepts are seldom used to extract higher-level semantics. Moreover, the ontology inference is often crisp. This paper aims to enable sophisticated semantic querying of images, and thus contributes to 1) an ontology framework to contain both visual and contextual knowledge, and 2) a probabilistic inference approach to reason the high-level concepts based on different sources of information. The experiment on a natural scene database from LabelMe database shows encouraging results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automated analysis of the sentiments presented in online consumer feedbacks can facilitate both organizations’ business strategy development and individual consumers’ comparison shopping. Nevertheless, existing opinion mining methods either adopt a context-free sentiment classification approach or rely on a large number of manually annotated training examples to perform context sensitive sentiment classification. Guided by the design science research methodology, we illustrate the design, development, and evaluation of a novel fuzzy domain ontology based contextsensitive opinion mining system. Our novel ontology extraction mechanism underpinned by a variant of Kullback-Leibler divergence can automatically acquire contextual sentiment knowledge across various product domains to improve the sentiment analysis processes. Evaluated based on a benchmark dataset and real consumer reviews collected from Amazon.com, our system shows remarkable performance improvement over the context-free baseline.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging and represent those in a form of ontology, but the application of the learned ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, user tagging systems have grown in popularity on the web. The tagging process is quite simple for ordinary users, which contributes to its popularity. However, free vocabulary has lack of standardization and semantic ambiguity. It is possible to capture the semantics from user tagging into some form of ontology, but the application of the resulted ontology for recommendation making has not been that flourishing. In this paper we discuss our approach to learn domain ontology from user tagging information and apply the extracted tag ontology in a pilot tag recommendation experiment. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the emergence of Web 2.0, Web users can classify Web items of their interest by using tags. Tags reflect users’ understanding to the items collected in each tag. Exploring user tagging behavior provides a promising way to understand users’ information needs. However, free and relatively uncontrolled vocabulary has its drawback in terms of lack of standardization and semantic ambiguity. Moreover, the relationships among tags have not been explored even there exist rich relationships among tags which could provide valuable information for us to better understand users. In this paper, we propose a novel approach to construct tag ontology based on the widely used general ontology WordNet to capture the semantics and the structural relationships of tags. Ambiguity of tags is a challenging problem to deal with in order to construct high quality tag ontology. We propose strategies to find the semantic meanings of tags and a strategy to disambiguate the semantics of tags based on the opinion of WordNet lexicographers. In order to evaluate the usefulness of the constructed tag ontology, in this paper we apply the extracted tag ontology in a tag recommendation experiment. We believe this is the first application of tag ontology for recommendation making. The initial result shows that by using the tag ontology to re-rank the recommended tags, the accuracy of the tag recommendation can be improved.