937 resultados para Ocean Currents
Resumo:
A radar scatterometer operates by transmitting a pulse of microwave energy toward the ocean's surface and measuring the normalized (per-unit-surface) radar backscatter coefficient (σ°). The primary application of scatterometry is the measurement of near-surface ocean winds. By combining σ° measurements from different azimuth angles, the 10 m vector wind can be determined through a Geophysical Model Function (GMF), which relates wind and backscatter. This paper proposes a mission concept for the measurement of both oceanic winds and surface currents, which makes full use of earlier C-band radar remote sensing experience. For the determination of ocean currents, in particular, the novel idea of using two chirps of opposite slope is introduced. The fundamental processing steps required to retrieve surface currents are given together with their associated accuracies. A detailed description of the mission proposal and comparisons between real and retrieved surface currents are presented. The proposed ocean Doppler scatterometer can be used to generate global surface ocean current maps with accuracies better than 0.2 m/s at a spatial resolution better than 25 km (i.e., 12.5 km spatial sampling) on a daily basis. These maps will allow gaining some insights on the upper ocean mesoscale dynamics. The work lies at a frontier, given that the present inability to measure ocean currents from space in a consistent and synoptic manner represents one of the greatest weaknesses in ocean remote sensing.
Resumo:
Numerous factors affect the distribution of mangrove plants. Most mangrove species are typically dispersed by water-buoyant propagules, allowing them to lake advantage of estuarine, coastal and ocean currents both to replenish existing stands and to establish new ones. The direction they travel depends on sea currents and land barriers, but the dispersal distance depends on the time that propagules remain buoyant and viable. This is expected to differ for each species. Similarly, each species will also differ in establishment success and growth development rate, and each has tolerance limits and growth responses which are apparently unique. Such attributes are presumably responsible for the characteristic distributional ranges of each species, as each responds to the environmental, physical and biotic settings they might occupy. In practice, species are often ordered by the interplay of different factors along environmental gradients, and these may conveniently be considered at four geographic scales-global, regional, estuarine and intertidal. We believe these influencing factors act similarly around the world, and to demonstrate this point, we present examples of distributional gradients from the two global biogeographic regions, the Atlantic East Pacific and the Indo-West Pacific.
Resumo:
As crises energéticas surgidas no decorrer do último século, incluindo a crise do petróleo, obrigaram o Homem a procurar cada vez mais fontes de energia alternativas e preferencialmente inesgotáveis. Desta situação, resultou uma forte aposta na exploração das fontes de energias renováveis, que são uma das principais alternativas para responder a um aumento de procura, e também, face às exigências de consumos actuais, beneficiando de ao se apostar numa energia limpa e renovável existir uma forte redução nos impactes ambientais que outras fontes de energia não apresentam. O aproveitamento dos recursos provenientes de fontes de energia renováveis para a produção de energia já existe há vários anos, e, em alguns casos, atingiram já um estado de maturidade considerável, como é caso da energia eólica. Em comparação, o mesmo já não acontece com a energia das ondas. Embora o oceano apresente um recurso com enorme potencial para ser explorado, incluindo as ondas e correntes oceânicas, os dispositivos tecnológicos necessários para a exploração deste recurso encontram-se maioritariamente ainda em fase experimental, havendo casos pontuais que atingiram a fase pré-comercial. Assim, não existe até à data um dispositivo padrão para a exploração da energia das ondas em grande escala, contrariamente ao que acontece com a energia eólica. Para esta situação, contribuiu o elevado número de dispositivos patenteados para a exploração da energia das ondas, nenhum deles com vantagens significativas relativamente a outros, e também, devido ao facto de a exploração deste tipo de energia não poder ser feito de igual modo na costa ou a muitos quilómetros dela. Na presente dissertação são apresentados alguns dos principais dispositivos existentes para a extracção de energia proveniente das ondas oceânicas, com especial atenção para os dispositivos de coluna de água oscilante.
Resumo:
Dissertação de mestrado em Ecologia
Resumo:
n.s. no.43(2003)
Resumo:
Informe de investigación elaborado a partir de una estancia en el Laboratorio de Diseño Computacional en Aeroespacial en el Massachusetts Institute of Technology (MIT), Estados Unidos, entre noviembre de 2006 y agosto de 2007. La aerodinámica es una rama de la dinámica de fluidos referida al estudio de los movimientos de los líquidos o gases, cuya meta principal es predecir las fuerzas aerodinámicas en un avión o cualquier tipo de vehículo, incluyendo los automóviles. Las ecuaciones de Navier-Stokes representan un estado dinámico del equilibrio de las fuerzas que actúan en cualquier región dada del fluido. Son uno de los sistemas de ecuaciones más útiles porque describen la física de una gran cantidad de fenómenos como corrientes del océano, flujos alrededor de una superficie de sustentación, etc. En el contexto de una tesis doctoral, se está estudiando un flujo viscoso e incompresible, solucionando las ecuaciones de Navier- Stokes incompresibles de una manera eficiente. Durante la estancia en el MIT, se ha utilizado un método de Galerkin discontinuo para solucionar las ecuaciones de Navier-Stokes incompresibles usando, o bien un parámetro de penalti para asegurar la continuidad de los flujos entre elementos, o bien un método de Galerkin discontinuo compacto. Ambos métodos han dado buenos resultados y varios ejemplos numéricos se han simulado para validar el buen comportamiento de los métodos desarrollados. También se han estudiado elementos particulares, los elementos de Raviart y Thomas, que se podrían utilizar en una formulación mixta para obtener un algoritmo eficiente para solucionar problemas numéricos complejos.
Resumo:
Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.
Resumo:
This paper seeks to illustrate the point that physical inconsistencies between thermodynamics and dynamics usually introduce nonconservative production/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs). Such terms potentially give rise to undesirable forces and/or diabatic terms in the momentum and thermodynamic equations, respectively, which could explain some of the observed errors in simulated ocean currents and water masses. In this paper, a theoretical framework is developed to provide a practical method to determine such nonconservative terms, which is illustrated in the context of a relatively simple form of the hydrostatic Boussinesq primitive equation used in early versions of OGCMs, for which at least four main potential sources of energy nonconservation are identified; they arise from: (1) the “hanging” kinetic energy dissipation term; (2) assuming potential or conservative temperature to be a conservative quantity; (3) the interaction of the Boussinesq approximation with the parameterizations of turbulent mixing of temperature and salinity; (4) some adiabatic compressibility effects due to the Boussinesq approximation. In practice, OGCMs also possess spurious numerical energy sources and sinks, but they are not explicitly addressed here. Apart from (1), the identified nonconservative energy sources/sinks are not sign definite, allowing for possible widespread cancellation when integrated globally. Locally, however, these terms may be of the same order of magnitude as actual energy conversion terms thought to occur in the oceans. Although the actual impact of these nonconservative energy terms on the overall accuracy and physical realism of the oceans is difficult to ascertain, an important issue is whether they could impact on transient simulations, and on the transition toward different circulation regimes associated with a significant reorganization of the different energy reservoirs. Some possible solutions for improvement are examined. It is thus found that the term (2) can be substantially reduced by at least one order of magnitude by using conservative temperature instead of potential temperature. Using the anelastic approximation, however, which was initially thought as a possible way to greatly improve the accuracy of the energy budget, would only marginally reduce the term (4) with no impact on the terms (1), (2) and (3).
Assessing and understanding the impact of stratospheric dynamics and variability on the earth system
Resumo:
Advances in weather and climate research have demonstrated the role of the stratosphere in the Earth system across a wide range of temporal and spatial scales. Stratospheric ozone loss has been identified as a key driver of Southern Hemisphere tropospheric circulation trends, affecting ocean currents and carbon uptake, sea ice, and possibly even the Antarctic ice sheets. Stratospheric variability has also been shown to affect short term and seasonal forecasts, connecting the tropics and midlatitudes and guiding storm track dynamics. The two-way interactions between the stratosphere and the Earth system have motivated the World Climate Research Programme's (WCRP) Stratospheric Processes and Their Role in Climate (SPARC) DynVar activity to investigate the impact of stratospheric dynamics and variability on climate. This assessment will be made possible by two new multi-model datasets. First, roughly 10 models with a well resolved stratosphere are participating in the Coupled Model Intercomparison Project 5 (CMIP5), providing the first multi-model ensemble of climate simulations coupled from the stratopause to the sea floor. Second, the Stratosphere Historical Forecasting Project (SHFP) of WCRP's Climate Variability and predictability (CLIVAR) program is forming a multi-model set of seasonal hindcasts with stratosphere resolving models, revealing the impact of both stratospheric initial conditions and dynamics on intraseasonal prediction. The CMIP5 and SHFP model-data sets will offer an unprecedented opportunity to understand the role of the stratosphere in the natural and forced variability of the Earth system and to determine whether incorporating knowledge of the middle atmosphere improves seasonal forecasts and climate projections. Capsule New modeling efforts will provide unprecedented opportunities to harness our knowledge of the stratosphere to improve weather and climate prediction.
Resumo:
An analysis of observational data in the Barents Sea along a meridian at 33°30' E between 70°30' and 72°30' N has reported a negative correlation between El Niño/La Niña Southern Oscillation (ENSO) events and water temperature in the top 200 m: the temperature drops about 0.5 °C during warm ENSO events while during cold ENSO events the top 200 m layer of the Barents Sea is warmer. Results from 1 and 1/4-degree global NEMO models show a similar response for the whole Barents Sea. During the strong warm ENSO event in 1997–1998 an anomalous anticyclonic atmospheric circulation over the Barents Sea enhances heat loses, as well as substantially influencing the Barents Sea inflow from the North Atlantic, via changes in ocean currents. Under normal conditions along the Scandinavian peninsula there is a warm current entering the Barents Sea from the North Atlantic, however after the 1997–1998 event this current is weakened. During 1997–1998 the model annual mean temperature in the Barents Sea is decreased by about 0.8 °C, also resulting in a higher sea ice volume. In contrast during the cold ENSO events in 1999–2000 and 2007–2008, the model shows a lower sea ice volume, and higher annual mean temperatures in the upper layer of the Barents Sea of about 0.7 °C. An analysis of model data shows that the strength of the Atlantic inflow in the Barents Sea is the main cause of heat content variability, and is forced by changing pressure and winds in the North Atlantic. However, surface heat-exchange with the atmosphere provides the means by which the Barents sea heat budget relaxes to normal in the subsequent year after the ENSO events.
Resumo:
Rising sea level is perhaps the most severe consequence of climate warming, as much of the world’s population and infrastructure is located near current sea level (Lemke et al. 2007). A major rise of a metre or more would cause serious problems. Such possibilities have been suggested by Hansen and Sato (2011) who pointed out that sea level was several metres higher than now during the Holsteinian and Eemian interglacials (about 250,000 and 120,000 years ago, respectively), even though the global temperature was then only slightly higher than it is nowadays. It is consequently of the utmost importance to determine whether such a sea level rise could occur and, if so, how fast it might happen. Sea level undergoes considerable changes due to natural processes such as the wind, ocean currents and tidal motions. On longer time scales, the sea level is influenced by steric effects (sea water expansion caused by temperature and salinity changes of the ocean) and by eustatic effects caused by changes in ocean mass. Changes in the Earth’s cryosphere, such as the retreat or expansion of glaciers and land ice areas, have been the dominant cause of sea level change during the Earth’s recent history. During the glacial cycles of the last million years, the sea level varied by a large amount, of the order of 100 m. If the Earth’s cryosphere were to disappear completely, the sea level would rise by some 65 m. The scientific papers in the present volume address the different aspects of the Earth’s cryosphere and how the different changes in the cryosphere affect sea level change. It represents the outcome of the first workshop held within the new ISSI Earth Science Programme. The workshop took place from 22 to 26 March, 2010, in Bern, Switzerland, with the objective of providing an in-depth insight into the future of mountain glaciers and the large land ice areas of Antarctica and Greenland, which are exposed to natural and anthropogenic climate influences, and their effects on sea level change. The participants of the workshop are experts in different fields including meteorology, climatology, oceanography, glaciology and geodesy; they use advanced space-based observational studies and state-of-the-art numerical modelling.
Resumo:
The region of sea ice near the edge of the sea ice pack is known as the marginal ice zone (MIZ), and its dynamics are complicated by ocean wave interaction with the ice cover, strong gradients in the atmosphere and ocean and variations in sea ice rheology. This paper focuses on the role of sea ice rheology in determining the dynamics of the MIZ. Here, sea ice is treated as a granular material with a composite rheology describing collisional ice floe interaction and plastic interaction. The collisional component of sea ice rheology depends upon the granular temperature, a measure of the kinetic energy of flow fluctuations. A simplified model of the MIZ is introduced consisting of the along and across momentum balance of the sea ice and the balance equation of fluctuation kinetic energy. The steady solution of these equations is found to leading order using elementary methods. This reveals a concentrated region of rapid ice flow parallel to the ice edge, which is in accordance with field observations, and previously called the ice jet. Previous explanations of the ice jet relied upon the existence of ocean currents beneath the ice cover. We show that an ice jet results as a natural consequence of the granular nature of sea ice.
Resumo:
The seasonal sea level variations observed from tide gauges over 1900-2013 and gridded satellite altimeter product AVISO over 1993-2013 in the northwest Pacific have been explored. The seasonal cycle is able to explain 60-90% of monthly sea level variance in the marginal seas, while it explains less than 20% of variance in the eddy-rich regions. The maximum annual and semi-annual sea level cycles (30cm and 6cm) are observed in the north of the East China Sea and the west of the South China Sea respectively. AVISO was found to underestimate the annual amplitude by 25% compared to tide gauge estimates along the coasts of China and Russia. The forcing for the seasonal sea level cycle was identified. The atmospheric pressure and the steric height produce 8-12cm of the annual cycle in the middle continental shelf and in the Kuroshio Current regions separately. The removal of the two attributors from total sea level permits to identify the sea level residuals that still show significant seasonality in the marginal seas. Both nearby wind stress and surface currents can explain well the long-term variability of the seasonal sea level cycle in the marginal seas and the tropics because of their influence on the sea level residuals. Interestingly, the surface currents are a better descriptor in the areas where the ocean currents are known to be strong. Here, they explain 50-90% of inter-annual variability due to the strong links between the steric height and the large-scale ocean currents.
Resumo:
The El Niño/Southern Oscillation (ENSO) is the dominant climate phenomenon affecting extreme weather conditions worldwide. Its response to greenhouse warming has challenged scientists for decades, despite model agreement on projected changes in mean state. Recent studies have provided new insights into the elusive links between changes in ENSO and in the mean state of the Pacific climate. The projected slow-down in Walker circulation is expected to weaken equatorial Pacific Ocean currents, boosting the occurrences of eastward-propagating warm surface anomalies that characterize observed extreme El Niño events. Accelerated equatorial Pacific warming, particularly in the east, is expected to induce extreme rainfall in the eastern equatorial Pacific and extreme equatorward swings of the Pacific convergence zones, both of which are features of extreme El Niño. The frequency of extreme La Niña is also expected to increase in response to more extreme El Niños, an accelerated maritime continent warming and surface-intensified ocean warming. ENSO-related catastrophic weather events are thus likely to occur more frequently with unabated greenhouse-gas emissions. But model biases and recent observed strengthening of the Walker circulation highlight the need for further testing as new models, observations and insights become available.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)