921 resultados para ORDER-DISORDER TRANSITION
Resumo:
We have investigated the inverted phase formation and the transition from inverted to normal phase for a cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer in solution-cast films with thickness about 300 nm during the process of the solution concentrating by slow solvent evaporation. The cast solvent is 1, 1,2,2-tetrachloroethane (Tetra-CE), a good solvent for both blocks but having preferential affinity for the minority PMMA block. During such solution concentrating process, the phase behavior was examined by freeze-drying the samples at different evaporation time, corresponding to at different block copolymer concentrations, phi. As phi increases from similar to 0.1 % (nu/nu), the phase structure evolved from the disordered sphere phase (DS), consisting of random arranged spheres with the majority PS block as I core and the minority PMMA block as a corona, to ordered inverted phases including inverted spheres (IS), inverted cylinders (IC), and inverted hexagonally perforated lamellae (IHPL) with the minority PMMA block comprising the continuum phase, and then to the lamellar (LAM) phase with alternate layers of the two blocks, and finally to the normal cylinder (NC) phase with the majority PS block comprising the continuum phase. The solvent nature and the copolymer solution concentration are shown to be mainly responsible for the inverted phase formation and the phase transition process.
Resumo:
The change in the microphase separation transition (MST) temperature of a styrene-butadiene-styrene (SBS) triblock copolymer induced by the addition of polystyrene (PS) was investigated by small-angle X-ray scattering. It was found that the transition temperature was determined from the molecular weight (M(H)) Of the added PS in relation to that of the corresponding blocks (M(A)) in the copolymer. The MST temperature decreased with added PS if M(H)/M(A) < 1/4, while it increased with added PS when M(H)/M(A) > 1/4 Analysis of the theoretical expression based on the random phase approximation showed exactly the same tendency of change in the transition temperatures as that observed experimentally. The interaction parameter, chi(SB), obtained by nonlinear fitting of the scattering profiles of SBS/PS blends in the disordered state, was found to be a function of temperature and composition. Composition fluctuations were found to exist in SBS/PS blends, increasing with increasing addition of PS but diminishing with increasing molecular weight of the added PS.
Resumo:
Ice Ih is comprised of orientationally disordered water molecules giving rise to positional disorder of the hydrogen atoms in the hydrogen bonded network of the lattice. Here we arrive at a first principles determination of the surface energy of ice Ih and suggest that the surface of ice is significantly more proton ordered than the bulk. We predict that the proton order-disorder transition, which occurs in the bulk at similar to 72 K, will not occur at the surface at any temperature below surface melting. An order parameter which defines the surface energy of ice Ih surfaces is also identified.
Resumo:
Research on transition-metal nanoalloy clusters composed of a few atoms is fascinating by their unusual properties due to the interplay among the structure, chemical order and magnetism. Such nanoalloy clusters, can be used to construct nanometer devices for technological applications by manipulating their remarkable magnetic, chemical and optical properties. Determining the nanoscopic features exhibited by the magnetic alloy clusters signifies the need for a systematic global and local exploration of their potential-energy surface in order to identify all the relevant energetically low-lying magnetic isomers. In this thesis the sampling of the potential-energy surface has been performed by employing the state-of-the-art spin-polarized density-functional theory in combination with graph theory and the basin-hopping global optimization techniques. This combination is vital for a quantitative analysis of the quantum mechanical energetics. The first approach, i.e., spin-polarized density-functional theory together with the graph theory method, is applied to study the Fe$_m$Rh$_n$ and Co$_m$Pd$_n$ clusters having $N = m+n \leq 8$ atoms. We carried out a thorough and systematic sampling of the potential-energy surface by taking into account all possible initial cluster topologies, all different distributions of the two kinds of atoms within the cluster, the entire concentration range between the pure limits, and different initial magnetic configurations such as ferro- and anti-ferromagnetic coupling. The remarkable magnetic properties shown by FeRh and CoPd nanoclusters are attributed to the extremely reduced coordination number together with the charge transfer from 3$d$ to 4$d$ elements. The second approach, i.e., spin-polarized density-functional theory together with the basin-hopping method is applied to study the small Fe$_6$, Fe$_3$Rh$_3$ and Rh$_6$ and the larger Fe$_{13}$, Fe$_6$Rh$_7$ and Rh$_{13}$ clusters as illustrative benchmark systems. This method is able to identify the true ground-state structures of Fe$_6$ and Fe$_3$Rh$_3$ which were not obtained by using the first approach. However, both approaches predict a similar cluster for the ground-state of Rh$_6$. Moreover, the computational time taken by this approach is found to be significantly lower than the first approach. The ground-state structure of Fe$_{13}$ cluster is found to be an icosahedral structure, whereas Rh$_{13}$ and Fe$_6$Rh$_7$ isomers relax into cage-like and layered-like structures, respectively. All the clusters display a remarkable variety of structural and magnetic behaviors. It is observed that the isomers having similar shape with small distortion with respect to each other can exhibit quite different magnetic moments. This has been interpreted as a probable artifact of spin-rotational symmetry breaking introduced by the spin-polarized GGA. The possibility of combining the spin-polarized density-functional theory with some other global optimization techniques such as minima-hopping method could be the next step in this direction. This combination is expected to be an ideal sampling approach having the advantage of avoiding efficiently the search over irrelevant regions of the potential energy surface.
Resumo:
The structural, electronic and magnetic properties of one-dimensional 3d transition-metal (TM) monoatomic chains having linear, zigzag and ladder geometries are investigated in the frame-work of first-principles density-functional theory. The stability of long-range magnetic order along the nanowires is determined by computing the corresponding frozen-magnon dispersion relations as a function of the 'spin-wave' vector q. First, we show that the ground-state magnetic orders of V, Mn and Fe linear chains at the equilibrium interatomic distances are non-collinear (NC) spin-density waves (SDWs) with characteristic equilibrium wave vectors q that depend on the composition and interatomic distance. The electronic and magnetic properties of these novel spin-spiral structures are discussed from a local perspective by analyzing the spin-polarized electronic densities of states, the local magnetic moments and the spin-density distributions for representative values q. Second, we investigate the stability of NC spin arrangements in Fe zigzag chains and ladders. We find that the non-collinear SDWs are remarkably stable in the biatomic chains (square ladder), whereas ferromagnetic order (q =0) dominates in zigzag chains (triangular ladders). The different magnetic structures are interpreted in terms of the corresponding effective exchange interactions J(ij) between the local magnetic moments μ(i) and μ(j) at atoms i and j. The effective couplings are derived by fitting a classical Heisenberg model to the ab initio magnon dispersion relations. In addition they are analyzed in the framework of general magnetic phase diagrams having arbitrary first, second, and third nearest-neighbor (NN) interactions J(ij). The effect of external electric fields (EFs) on the stability of NC magnetic order has been quantified for representative monoatomic free-standing and deposited chains. We find that an external EF, which is applied perpendicular to the chains, favors non-collinear order in V chains, whereas it stabilizes the ferromagnetic (FM) order in Fe chains. Moreover, our calculations reveal a change in the magnetic order of V chains deposited on the Cu(110) surface in the presence of external EFs. In this case the NC spiral order, which was unstable in the absence of EF, becomes the most favorable one when perpendicular fields of the order of 0.1 V/Å are applied. As a final application of the theory we study the magnetic interactions within monoatomic TM chains deposited on graphene sheets. One observes that even weak chain substrate hybridizations can modify the magnetic order. Mn and Fe chains show incommensurable NC spin configurations. Remarkably, V chains show a transition from a spiral magnetic order in the freestanding geometry to FM order when they are deposited on a graphene sheet. Some TM-terminated zigzag graphene-nanoribbons, for example V and Fe terminated nanoribbons, also show NC spin configurations. Finally, the magnetic anisotropy energies (MAEs) of TM chains on graphene are investigated. It is shown that Co and Fe chains exhibit significant MAEs and orbital magnetic moments with in-plane easy magnetization axis. The remarkable changes in the magnetic properties of chains on graphene are correlated to charge transfers from the TMs to NN carbon atoms. Goals and limitations of this study and the resulting perspectives of future investigations are discussed.
Resumo:
Periodic first-principles calculations based on density functional theory at the B3LYP level has been carried out to investigate the photoluminescence (PL) emission of BaZrO(3) assembled nanoparticles at room temperature. The defect created in the nanocrystals and their resultant electronic features lead to a diversification of electronic recombination within the BaZrO(3) band gap. Its optical phenomena are discussed in the light of photoluminescence emission at the green-yellow region around 570 nm. The theoretical model for displaced atoms and/or angular changes leads to the breaking of the local symmetry, which is based on the refined structure provided by Rietveld methodology. For each situation a band structure, charge mapping, and density of states were built and analyzed. X-ray diffraction (XRD) patterns, UV-vis measurements, and field emission scanning electron microscopy (FE-SEM) images are essential for a full evaluation of the crystal structure and morphology.
Resumo:
Intense violet-blue photoluminescence (PL) emission at room temperature was verified in BaZrO3 (BZO) powders with structural order-disorder. Ab-initio calculations, ultraviolet-visible absorption spectroscopy and PL were performed. Theoretical results showed that the local disorder in the network-formed Zr clusters present an important role in the formation of hole-electron pair. The experimental data and theoretical results are in agreement, indicating that the PL emission in BZO powders can be related to the structural order-disorder degree in the lattice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Intense violet-blue photoluminescence (PL) emission at room temperature was verified in BaZrO3 (BZO) powders with structural order-disorder. Ab-initio calculations, ultraviolet-visible absorption spectroscopy and PL were performed. Theoretical results showed that the local disorder in the network-formed Zr clusters present an important role in the formation of hole-electron pair. The experimental data and theoretical results are in agreement, indicating that the PL emission in BZO powders can be related to the structural order-disorder degree in the lattice. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Intense and broad visible photoluminescent (PL) band was observed at room temperature in structurally disordered PbZr0.53Ti0.47O3 powders. The lead zirconate titanate PbZr0.53Ti0.47O3 powders prepared by the polymeric precursor method and heat treated at different temperatures were structurally characterized at long range by means of X-ray diffraction. The PL was measured at room temperature samples heat treated at different temperatures. Experimental measurements and quantum-mechanical calculations showed that the high structural order and the high structural disorder in PbZr0.53Ti0.47O3 lattice are not favorable to the intense PL emission. Only samples containing simultaneous structural order and disorder in their lattice present the intense visible PL emission at room temperature. (C) 2007 Published by Elsevier B.V.
Resumo:
The nature of the intense visible room temperature photoluminescence of BaZr0.5Ti0.5O3 non-crystalline thin films is discussed in the light of experimental results and theoretical calculations. The photoluminescence measurements reveal that the emission intensity changes with the degree of disorder in the BaZr0.5Ti0.5O3 lattice. First principles quantum mechanical techniques, based on density functional theory at B3LYP level, have been employed to study the electronic structure of a crystalline model and of structurally disordered models in order to detect the influence of disorder on the electronic structure. An analysis of the electronic charge distribution reveals local polarization in the disordered structures. The relevance of the present theoretical and experimental results on the photoluminescence behavior of BZT is discussed. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The order-disorder transformation in the Ni-4.49 at.% Al alloy was studied using electrical resistivity measurements, microhardness measurements, differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results confirmed the ordering behavior expected for Ni-Al dilute alloys and the suggested relation between resistivity changes and microhardness changes with antiferromagnetic spin ordering. The higher value obtained for the activation energy of vacancy migration was associated with a decrease in the Al concentration gradient near solute-depleted regions. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this letter, the authors propose that photoluminescence emission in CaTiO3 is affected not only by disorder in the lattice former but also by structural disorder in the lattice modifier. Structural disorder was evaluated by Ti, Ca K-edge x-ray absorption near-edge structure experiments and by photoluminescence emission. The preedge feature of the Ca K edge was related to the intensity of photoluminescence emission. The results of the preedge feature of the Ca K-edge x-ray absorption near-edge structure confirm the presence of different Ca coordination numbers, namely, Ca-O-11 and Ca-O-12. (c) 2007 American Institute of Physics.