999 resultados para OPTICAL-TRANSITIONS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, doped AlGaAs/GaAs parabolic quantum wells (PQW) with different well widths (from 1000 angstrom up to 3000 angstrom) were investigated by means of photoluminescence (PL) measurements. In order to achieve the 2DEG inside the PQW Si delta doping is placed at both side of the well. We have observed that the thickness of this space layer plays a major rule on the characteristics of the 2DEG. It has to be thicker enough to prevent any diffusions of Si to the well and thin enough to allow electrons migration inside the well. From PL measurement, we have observed beside the intra well transitions, indirect transitions involving still trapped electron on the delta doping and holes inside the PQW. For the thinness sample, we have measured a well defined PL peak at low energy side of the GaAs bulk emission. With the increasing of the well thickness this peak intensity decreases and for the thickest sample it almost disappears. Our theoretical calculation indicated that carriers (electron and holes) are more placed at the center of the PQW. In this way, when the well thickness increases the distance between electrons on the delta doping and holes on the well also increases, it decreases the probability of occurrence of these indirect optical transitions. (C) 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Universidade Federal de Juiz de Fora, Brazil.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties of cubic GaN epitaxial layers were investigated by modulated photoreflectance (PR) and photoluminescence in the temperature interval from 5 to 300 K. The epilayers were grown on GaAs(001) substrates by molecular beam epitaxy using a nitrogen RIF-activated plasma source. The PR spectra show a transition which is well fitted using the third-derivative functional form of the unperturbed dielectric function, which we interpret as band-to-band transition. Our results allow determination of the temperature dependence of the main gap of c-GaN and give insights into the residual strain in the film, as well as allow us to estimate the binding energy of the complex formed by an exciton bound to a neutral acceptor. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have developed a technique to measure the absolute frequencies of optical transitions by using an evacuated Rb-stabilized ring-cavity resonator as a transfer cavity. The absolute frequency of the Rb D-2 line (at 780 nm) used to stabilize the cavity is known and allows us to determine the absolute value of the unknown frequency. We study wavelength-dependent errors due to dispersion at the cavity mirrors by measuring the frequency of the same transition in the Cs D-2 line (at 852 nm) at three cavity lengths. The spread in the values shows that dispersion errors are below 30 kHz, corresponding to a relative precision of 10(-10). We give an explanation for reduced dispersion errors in the ring-cavity geometry by calculating errors due to the lateral shift and the phase shift at the mirrors, and show that they are roughly equal but occur with opposite signs. We have earlier shown that diffraction errors (due to Guoy phase) are negligible in the ring-cavity geometry compared to a linear cavity; the reduced dispersion error is another advantage. Our values are consistent with measurements of the same transition using the more expensive frequency-comb technique. Our simpler method is ideally suited for measuring hyperfine structure, fine structure, and isotope shifts, up to several hundreds of gigahertz.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of KI encapsulation in narrow (HiPCO) single-walled carbon nanotubes is studied via Raman spectroscopy and optical absorption. The analysis of the data explores the interplay between strain and structural modifications, bond-length changes, charge transfer, and electronic density of states. KI encapsulation appears to be consistent with both charge transfer and strain that shrink both the C-C bonds and the overall nanotube along the axial direction. The charge transfer in larger semiconducting nanotubes is low and comparable with some cases of electrochemical doping, while optical transitions between pairs of singularities of the density of states are quenched for narrow metallic nanotubes. Stronger changes in the density of states occur in some energy ranges and are attributed to polarization van der Waals interactions caused by the ionic encapsulate. Unlike doping with other species, such as atoms and small molecules, encapsulation of inorganic compounds via the molten-phase route provides stable effects due to maximal occupation of the nanotube inner space.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-resolution time resolved transmittivity measurements on horizontally aligned free-standing multi-walled carbon nanotubes reveal a different electronic transient behavior from that of graphite. This difference is ascribed to the presence of discrete energy states in the multishell carbon nanotube electronic structure. Probe polarization dependence suggests that the optical transitions involve definite selection rules. The origin of these states is discussed and a rate equation model is proposed to rationalize our findings. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optical properties of quantum rods in the absence and presence of the magnetic field are studied in the framework of effective-mass envelope function theory. The two-dimensional (2D) and 1D transition dipoles of wurtzite quantum rods are investigated. It is found that the transition dipoles change from 2D to 1D as the aspect ratio of the ellipsoid increases, in agreement with the experimental results. The linear polarization factors of optical transitions of quantum rods with critical aspect ratio are zero at every orientation of the wave propagation. So quantum rods with critical aspect ratio have isotropic transition dipoles. Due to the 2D or 1D transition dipoles, the linear polarization factors of optical transitions of quantum rods change from negative or positive values to zero as the orientation of the wave propagation changes from the x axis of the crystal structure to the z axis, in agreement with the experimental results. Under magnetic field applied along the z axis of the crystal structure, the negative linear polarization factors in the 2D transition dipole case decrease as the magnetic field increases, while under magnetic field applied along the x axis, the negative linear polarization factors increase as the magnetic field increases. The antisymmetric Hamiltonian is very important to these effects of the magnetic field. It is found that quantum rods with a given radius at a given temperature have dark excitons in a range of aspect ratio. The dimensions along the x, y axes of the crystal structure play opposite roles to the dimension along the z axis on the dark exciton phenomenon. Dark excitons become bright under appropriate magnetic field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The theoretical analysis of intersubband optical transitions for InAs/ InGaAs quantum dots-in-a-well ( DWELL ) detectors are performed in the framework of effective-mass envelope- function theory. In contrast to InAs/ GaAs quantum dot (QD) structures, the calculated band structure of DWELL quantitatively confirms that an additional InGaAs quantum well effectively lowers the ground state of InAs QDs relative to the conduction-band edge of GaAs and enhances the confinement of electrons. By changing the doping level, the dominant optical transition can occur either between the bound states in the dots or from the ground state in the dots to bound states in the well, which corresponds to the far-infrared and long-wave infrared (LWIR ) peaks in the absorption spectra, respectively. Our calculated results also show that it is convenient to tailor the operating wavelength in the LWIR atmospheric window ( 8 - 12 mu m ) by adjusting the thickness of the InGaAs layer while keeping the size of the quantum dots fixed. Theoretical predictions agree well with the available experimental data. (c) 2005 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Based on the results of the temperature-dependent photoluminescence (PL) measurements, the broad PL emission in the phase-separated GaNP alloys with P compositions of 0.03, 0.07, and 0.15 has investigated. The broad PL peaks at 2.18, 2.12 and 1.83 eV are assigned to be an emission from the optical transitions from several trap levels, possibly the iso-electronic trap levels related to nitrogen. With the increasing P composition (from 0.03 to 0.15), these iso-electronic trap levels are shown to become resonant with the conduction band of the alloy and thus optically inactive, leading to the apparent red shift (80-160meV) of the PL peak energy and the trend of the red shift is strengthened. No PL emission peak is observed from the GaN-rich GaNP region, suggesting that the photogenerated carriers in the GaN-rich GaNP region may recombine with each other via non-radiation transitions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We study the oscillator strengths of the optical transitions of the vertically stacked self-assembled InAs quantum discs. The oscillator strengths change evidently when the two quantum discs are far apart from each other. A vertically applied electric held affects the oscillator strengths severely, while the oscillator strengths change slowly as the radius of one disc increases. We also studied the excitonic energy of the system, including the Coulomb interaction. The excitonic energy increases with the increasing radius of one disc, but decreases as a vertically applied electric field increases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We investigate an optical quantum memory scheme with V-type three-level atoms based on the controlled reversible inhomogeneous broadening (CRIB) technique. We theoretically show the possibility to store and retrieve a weak light pulse interacting with the two optical transitions of the system. This scheme implements a quantum memory for a polarization qubit - a single photon in an arbitrary polarization state - without the need of two spatially separated two-level media, thus offering the advantage of experimental compactness overcoming the limitations due to mismatching and unequal efficiencies that can arise in spatially separated memories. The effects of a relative phase change between the atomic levels, as well as of phase noise due to, for example, the presence of spurious electric and magnetic fields are analyzed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical absorption studies of free base and rare earth incorporated phthalocyanine doped borate glass matrix are reported for the first lime. The absorption spectra recorded in the UV- VIS region show two well defined absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q band. The Q band always shows its characteristic splitting in all the doped glass matrices and the intensities of these components are found to vary from one Pc to another. Some of the important optical parameters, namely optical absorption coefficient (a), molar extinction coefficient (ε), absorption cross section (σa), oscillator strength (f), electric dipole strength (q2), absorption half bandwidth (Δλ) of the principal optical transitions have also been evaluated. Moreover, the spectral dependence of refractive index (n) and thereby the optical dielectric constant (ε) on wavelength yielded values of carrier concentration to effective mass ratio (N/m*) of the phthalocyanine molecule in the present glassy systems. Optical band gap (Eg) and width of the band tail (Et) are computed and their variations among the prepared samples are also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present the first observation of optical transitions between doubly excited doublet states in the term systems N V, 0 VI and F VII. The spectra were produced by foil excitation of fast ion beams. The assignment of the spectral lines was made by comparison with the results of MCDP calculations along the isoelectronic sequence. The same method also led to the identification of two 3d - 4f quartet transitions in Mg X.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ab initio calculations based on the density functional theory (DFT) are used to investigate the electronic and optical properties of sillimanite. The geometrical parameters of the unit cell, which contain 32 atoms, have been fully optimized and are in good agreement with the experimental data. The electronic structure shows that sillimanite has an indirect band gap of 5.18 eV. The complex dielectric function and optical constants, such as extinction coefficient, refractive index, reflectivity and energy-loss spectrum, are calculated. The optical properties of sillimanite are discussed based on the band structure calculations. It is shown that the O-2p states and Al-3s, Si-3s states play the major role in optical transitions as initial and final states, respectively. (C) 2011 Elsevier B.V. All rights reserved.