970 resultados para OCLC Records
Resumo:
Introduction The onset of Personally Controlled Electronic Health Records in Australia demand healthcare decision making processes to comprise, understand and accept electronic health records (EHR). Nurses play a key, central role in the healthcare decision making process and their perceptions and attitudes of EHRs are significant [1], which develop during their academic life. However, studies aimed at nursing students’ attitudes of EHRs are very limited [2-4]. A proper understanding of these attitudes and how they evolve with academic progress is important. This paper presents results from a survey conducted at a leading University in Queensland, Australia as a first step to filling this gap.
Resumo:
Health care is an information-intensive business. Sharing information in health care processes is a smart use of data enabling informed decision-making whilst ensuring. the privacy and security of patient information. To achieve this, we propose data encryption techniques embedded Information Accountability Framework (IAF) that establishes transitions of the technological concept, thus enabling understanding of shared responsibility, accessibility, and efficient cost effective informed decisions between health care professionals and patients. The IAF results reveal possibilities of efficient informed medical decision making and minimisation of medical errors. Of achieving this will require significant cultural changes and research synergies to ensure the sustainability, acceptability and durability of the IAF
Resumo:
This research was a step forward in developing a data integration framework for Electronic Health Records. The outcome of the research is a conceptual and logical Data Warehousing model for integrating Cardiac Surgery electronic data records. This thesis investigated the main obstacles for the healthcare data integration and proposes a data warehousing model suitable for integrating fragmented data in a Cardiac Surgery Unit.
Resumo:
Temperate Australia sits between the heat engine of the tropics and the cold Southern Ocean, encompassing a range of rainfall regimes and falling under the influence of different climatic drivers. Despite this heterogeneity, broad-scale trends in climatic and environmental change are evident over the past 30 ka. During the early glacial period (∼30–22 ka) and the Last Glacial Maximum (∼22–18 ka), climate was relatively cool across the entire temperate zone and there was an expansion of grasslands and increased fluvial activity in regionally important Murray–Darling Basin. The temperate region at this time appears to be dominated by expanded sea ice in the Southern Ocean forcing a northerly shift in the position of the oceanic fronts and a concomitant influx of cold water along the southeast (including Tasmania) and southwest Australian coasts. The deglacial period (∼18–12 ka) was characterised by glacial recession and eventual disappearance resulting from an increase in temperature deduced from terrestrial records, while there is some evidence for climatic reversals (e.g. the Antarctic Cold Reversal) in high resolution marine sediment cores through this period. The high spatial density of Holocene terrestrial records reveals an overall expansion of sclerophyll woodland and rainforest taxa across the temperate region after ∼12 ka, presumably in response to increasing temperature, while hydrological records reveal spatially heterogeneous hydro-climatic trends. Patterns after ∼6 ka suggest higher frequency climatic variability that possibly reflects the onset of large scale climate variability caused by the El Niño/Southern Oscillation.
Resumo:
The Australian e-Health Research Centre (AEHRC) recently participated in the ShARe/CLEF eHealth Evaluation Lab Task 1. The goal of this task is to individuate mentions of disorders in free-text electronic health records and map disorders to SNOMED CT concepts in the UMLS metathesaurus. This paper details our participation to this ShARe/CLEF task. Our approaches are based on using the clinical natural language processing tool Metamap and Conditional Random Fields (CRF) to individuate mentions of disorders and then to map those to SNOMED CT concepts. Empirical results obtained on the 2013 ShARe/CLEF task highlight that our instance of Metamap (after ltering irrelevant semantic types), although achieving a high level of precision, is only able to identify a small amount of disorders (about 21% to 28%) from free-text health records. On the other hand, the addition of the CRF models allows for a much higher recall (57% to 79%) of disorders from free-text, without sensible detriment in precision. When evaluating the accuracy of the mapping of disorders to SNOMED CT concepts in the UMLS, we observe that the mapping obtained by our ltered instance of Metamap delivers state-of-the-art e ectiveness if only spans individuated by our system are considered (`relaxed' accuracy).
Resumo:
Information privacy is a critical success/failure factor in information technology supported healthcare (eHealth). eHealth systems utilise electronic health records (EHR) as the main source of information, thus, implementing appropriate privacy preserving methods for EHRs is vital for the proliferation of eHealth. Whilst information privacy may be a fundamental requirement for eHealth consumers, healthcare professionals demand non-restricted access to patient information for improved healthcare delivery, thus, creating an environment where stakeholder requirements are contradictory. Therefore, there is a need to achieve an appropriate balance of requirements in order to build successful eHealth systems. Towards achieving this balance, a new genre of eHealth systems called Accountable-eHealth (AeH) systems has been proposed. In this paper, an access control model for EHRs is presented that can be utilised by AeH systems to create information usage policies that fulfil both stakeholders’ requirements. These policies are used to accomplish the aforementioned balance of requirements creating a satisfactory eHealth environment for all stakeholders. The access control model is validated using a Web based prototype as a proof of concept.
Resumo:
We present an approach to automatically de-identify health records. In our approach, personal health information is identified using a Conditional Random Fields machine learning classifier, a large set of linguistic and lexical features, and pattern matching techniques. Identified personal information is then removed from the reports. The de-identification of personal health information is fundamental for the sharing and secondary use of electronic health records, for example for data mining and disease monitoring. The effectiveness of our approach is first evaluated on the 2007 i2b2 Shared Task dataset, a widely adopted dataset for evaluating de-identification techniques. Subsequently, we investigate the robustness of the approach to limited training data; we study its effectiveness on different type and quality of data by evaluating the approach on scanned pathology reports from an Australian institution. This data contains optical character recognition errors, as well as linguistic conventions that differ from those contained in the i2b2 dataset, for example different date formats. The findings suggest that our approach compares to the best approach from the 2007 i2b2 Shared Task; in addition, the approach is found to be robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
Objective Evaluate the effectiveness and robustness of Anonym, a tool for de-identifying free-text health records based on conditional random fields classifiers informed by linguistic and lexical features, as well as features extracted by pattern matching techniques. De-identification of personal health information in electronic health records is essential for the sharing and secondary usage of clinical data. De-identification tools that adapt to different sources of clinical data are attractive as they would require minimal intervention to guarantee high effectiveness. Methods and Materials The effectiveness and robustness of Anonym are evaluated across multiple datasets, including the widely adopted Integrating Biology and the Bedside (i2b2) dataset, used for evaluation in a de-identification challenge. The datasets used here vary in type of health records, source of data, and their quality, with one of the datasets containing optical character recognition errors. Results Anonym identifies and removes up to 96.6% of personal health identifiers (recall) with a precision of up to 98.2% on the i2b2 dataset, outperforming the best system proposed in the i2b2 challenge. The effectiveness of Anonym across datasets is found to depend on the amount of information available for training. Conclusion Findings show that Anonym compares to the best approach from the 2006 i2b2 shared task. It is easy to retrain Anonym with new datasets; if retrained, the system is robust to variations of training size, data type and quality in presence of sufficient training data.
Resumo:
Electronic Medical Record (EMR) systems are being implemented increasingly worldwide. Saudi Arabia is one of the developing countries that commenced implementing such systems in 1988. Whilst EMR uptake has been low in Saudi Arabia until now, a number of hospitals have implemented EMR systems successfully. This paper analyses available studies (n = 28) in the literature regarding EMR implementation in Saudi Arabia to identify the progress of EMR implementation to date and to identify the facilitators and barriers to implementation.
Resumo:
Detailed knowledge of the past history of an active volcano is crucial for the prediction of the timing, frequency and style of future eruptions, and for the identification of potentially at-risk areas. Subaerial volcanic stratigraphies are often incomplete, due to a lack of exposure, or burial and erosion from subsequent eruptions. However, many volcanic eruptions produce widely-dispersed explosive products that are frequently deposited as tephra layers in the sea. Cores of marine sediment therefore have the potential to provide more complete volcanic stratigraphies, at least for explosive eruptions. Nevertheless, problems such as bioturbation and dispersal by currents affect the preservation and subsequent detection of marine tephra deposits. Consequently, cryptotephras, in which tephra grains are not sufficiently concentrated to form layers that are visible to the naked eye, may be the only record of many explosive eruptions. Additionally, thin, reworked deposits of volcanic clasts transported by floods and landslides, or during pyroclastic density currents may be incorrectly interpreted as tephra fallout layers, leading to the construction of inaccurate records of volcanism. This work uses samples from the volcanic island of Montserrat as a case study to test different techniques for generating volcanic eruption records from marine sediment cores, with a particular relevance to cores sampled in relatively proximal settings (i.e. tens of kilometres from the volcanic source) where volcaniclastic material may form a pervasive component of the sedimentary sequence. Visible volcaniclastic deposits identified by sedimentological logging were used to test the effectiveness of potential alternative volcaniclastic-deposit detection techniques, including point counting of grain types (component analysis), glass or mineral chemistry, colour spectrophotometry, grain size measurements, XRF core scanning, magnetic susceptibility and X-radiography. This study demonstrates that a set of time-efficient, non-destructive and high-spatial-resolution analyses (e.g. XRF core-scanning and magnetic susceptibility) can be used effectively to detect potential cryptotephra horizons in marine sediment cores. Once these horizons have been sampled, microscope image analysis of volcaniclastic grains can be used successfully to discriminate between tephra fallout deposits and other volcaniclastic deposits, by using specific criteria related to clast morphology and sorting. Standard practice should be employed when analysing marine sediment cores to accurately identify both visible tephra and cryptotephra deposits, and to distinguish fallout deposits from other volcaniclastic deposits.
Resumo:
This conceptual paper is a preliminary part of an ongoing study into take-up of electronic personal health records (ePHRs). The purpose of this work is to contextually ‘operationalise' Grönroos’ (2012) model of value co-creation in service for ePHRs. Using findings in the extant literature we enhance theoretical and practical understanding of the potential for co-creation of value with ePHRs for relevant stakeholders. The research design focused on the selection and evaluation of relevant literature to include in the discussion. The objective was to demonstrate which articles can be used to 'contextualise' the concepts in relation to relevant healthcare providers and patient engagement in the co-creation of value from having shared ePHRs. Starting at the service concept, that is, what the service provider wants to achieve and for whom, there is little doubt that there are recognised benefits that co-create value for both healthcare providers and healthcare consumers (i.e. patients) through shared ePHRs. We further highlight both alignments and misalignments in the resources and activities concepts between stakeholder groups. Examples include the types of functionalities as well as the interactive and peer communication needs perceived as useful for healthcare providers compared to healthcare consumers. The paper has implications for theory and practice and is an original and innovative approach to studying the co-creation of value in eHealth delivery.
Resumo:
Critical to the research of urban morphologists is the availability of historical records that document the urban transformation of the study area. However, thus far little work has been done towards an empirical approach to the validation of archival data in this field. Outlined in this paper, therefore, is a new methodology for validating the accuracy of archival records and mapping data, accrued through the process of urban morphological research, so as to establish a reliable platform from which analysis can proceed. The paper particularly addresses the problems of inaccuracies in existing curated historical information, as well as errors in archival research by student assistants, which together give rise to unacceptable levels of uncertainty in the documentation. The paper discusses the problems relating to the reliability of historical information, demonstrates the importance of data verification in urban morphological research, and proposes a rigorous method for objective testing of collected archival data through the use of qualitative data analysis software.
Resumo:
Background Historically, the paper hand-held record (PHR) has been used for sharing information between hospital clinicians, general practitioners and pregnant women in a maternity shared-care environment. Recently in alignment with a National e-health agenda, an electronic health record (EHR) was introduced at an Australian tertiary maternity service to replace the PHR for collection and transfer of data. The aim of this study was to examine and compare the completeness of clinical data collected in a PHR and an EHR. Methods We undertook a comparative cohort design study to determine differences in completeness between data collected from maternity records in two phases. Phase 1 data were collected from the PHR and Phase 2 data from the EHR. Records were compared for completeness of best practice variables collected The primary outcome was the presence of best practice variables and the secondary outcomes were the differences in individual variables between the records. Results Ninety-four percent of paper medical charts were available in Phase 1 and 100% of records from an obstetric database in Phase 2. No PHR or EHR had a complete dataset of best practice variables. The variables with significant improvement in completeness of data documented in the EHR, compared with the PHR, were urine culture, glucose tolerance test, nuchal screening, morphology scans, folic acid advice, tobacco smoking, illicit drug assessment and domestic violence assessment (p = 0.001). Additionally the documentation of immunisations (pertussis, hepatitis B, varicella, fluvax) were markedly improved in the EHR (p = 0.001). The variables of blood pressure, proteinuria, blood group, antibody, rubella and syphilis status, showed no significant differences in completeness of recording. Conclusion This is the first paper to report on the comparison of clinical data collected on a PHR and EHR in a maternity shared-care setting. The use of an EHR demonstrated significant improvements to the collection of best practice variables. Additionally, the data in an EHR were more available to relevant clinical staff with the appropriate log-in and more easily retrieved than from the PHR. This study contributes to an under-researched area of determining data quality collected in patient records.