961 resultados para Nuclear magnetic resonance tube
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using (13)C- and (31)P-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N(2) fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential
Resumo:
This article reviews the principles and methods of nuclear magnetic resonance spectroscopy, and gives examples of applications carried out at ourFacility, which illustrate the capabilities of the technique.
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using (13)C- and (31)P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B. japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
Bradyrhizobium japonicum is a symbiotic nitrogen-fixing soil bacteria that induce root nodules formation in legume soybean (Glycine max.). Using 13C- and 31P-nuclear magnetic resonance (NMR) spectroscopy, we have analysed the metabolite profiles of cultivated B.japonicum cells and bacteroids isolated from soybean nodules. Our results revealed some quantitative and qualitative differences between the metabolite profiles of bacteroids and their vegetative state. This includes in bacteroids a huge accumulation of soluble carbohydrates such as trehalose, glutamate, myo-inositol and homospermidine as well as Pi, nucleotide pools and intermediates of the primary carbon metabolism. Using this novel approach, these data show that most of the compounds detected in bacteroids reflect the metabolic adaptation of rhizobia to the surrounding microenvironment with its host plant cells.
Resumo:
The effects of dark-induced stress on the evolution of the soluble metabolites present in senescent soybean (Glycine max L.) nodules were analysed in vitro using C-13- and P-31-NMR spectroscopy. Sucrose and trehalose were the predominant soluble storage carbons. During dark-induced stress, a decline in sugars and some key glycolytic metabolites was observed. Whereas 84% of the sucrose disappeared, only one-half of the trehalose was utilised. This decline coincides with the depletion of Gln, Asn, Ala and with an accumulation of ureides, which reflect a huge reduction of the N-2 fixation. Concomitantly, phosphodiesters and compounds like P-choline, a good marker of membrane phospholipids hydrolysis and cell autophagy, accumulated in the nodules. An autophagic process was confirmed by the decrease in cell fatty acid content. In addition, a slight increase in unsaturated fatty acids (oleic and linoleic acids) was observed, probably as a response to peroxidation reactions. Electron microscopy analysis revealed that, despite membranes dismantling, most of the bacteroids seem to be structurally intact. Taken together, our results show that the carbohydrate starvation induced in soybean by dark stress triggers a profound metabolic and structural rearrangement in the infected cells of soybean nodule which is representative of symbiotic cessation.
Resumo:
Electrolyte solutions are of importance in a wide range of scientific contexts and as such have attracted considerable theoretical and experimental effort over many years. Nuclear Magnetic resonance provides a precise and versatile tool for investigation of electrolyte solutions, both in water and in organic solvents. Many structural and dynamic properties can be obtained through NMR experiments. The solution of aluminum chloride in water was studied. Different concentrations were taken for investigation. Independence of maximum line shift from concentration and acidity was shown. Six-coordinated structure of solvation shell was confirmed by experiments on 'H and 27A1 nuclei. Diffusion coefficients were studied. The solution of nickel chloride in methanol was studied. Lines, corresponding to coordinated and bulk methanol were found. Four-, five- and six-coordinated structures were found in different temperatures. The line for coordinated -OD group of deuterated methanol was observed on 2H spectrum for the first time. Partial deuteration of CH3 group was detected. Inability to observe coordinated -OH group was explained.
Resumo:
The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using ²H and ¹H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C3, C4, and CAM biosynthetic mechanisms, blends of C3 and C4 (agrins) and synthetic acetic acid.
Resumo:
COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC) and under high pressure conditions at low temperature (3.75 kbar, -13ºC). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.
Resumo:
A survey of predominantly industrial silicon carbide has been carried out using Magic Angle Spinning nuclear magnetic resonance (MAS nmr); a solid state technique. Three silicon carbide polytypes were studied; 3C, 6H, and 15R. The 13C and 29 Si MAS nmr spectra of the bulk SiC sample was identified on the basis of silicon (carbon) site type in the d iff ere n t pol Y t Y pes • Out to 5.00 A fro mac en t r a lsi 1 i con (0 r carbon) atom four types of sites were characterized using symmetry based calculations. This method of polytype analysis was also considered, in the prelminary stages, for applications with other polytypic material; CdBr 2 , CdI 2 , and PbI 2 " In an attempt to understand the minor components of silicon carbide, such as its surface, some samples were hydrofluoric acid washed and heated to extreme temperatures. Basically, an HF removable species which absorbs at -110 ppm (Si0 2 ) in the 29 Si MAS nmr spectrum is found in silicon carbide after heating. Other unidentified peaks observed at short recycle delays in some 29 Si MAS nmr spectra are considered to be impurities that may be within the lattice. These components comprise less than 5% of the observable silicon. A Tl study was carried out for 29 Si nuclei in a 3C ii polytype sample, using the Driven Equilibrium Single-Pulse Observation of T1 (DESPOT) technique. It appears as though there are a number of nuclei that have the same chemical shift but different T1 relaxation times. The T1 values range from 30 seconds to 11 minutes. Caution has to be kept when interpreting these results because this is the first time that DESPOT has been used for solid samples and it is not likely in full working order. MAS nmr indicates that the 13C and 29 Si ~sotropic chemical shifts of silicon carbide appear to have a reciprocal type of relationship_ Single crystal nmr analysis of a 6H sample is accordance with this finding when only the resultant isotropic shift is considered. However, single crystal nmr also shows that the actual response of the silicon and carbon nuclear environment to the applied magnetic field at various angles is not at all reciprocal. Such results show that much more single crystal nmr work is required to determine the actual behavior of the local magnetic environment of the SiC nuclei.
Resumo:
Boron tribalide complexes of 1,1-bis(dimethylamino)ethylene (DME) , t etramethylurea (TMU), tetramethylguanidine (TMG) , and pentamethylguanidine (PMG) and also mixed boron t r ihalide adducts of DME have been investigated by 1H and 19F NMR spectroscopy. Both nitrogen and the C-Q-H carbon of DME are possible donor a toms to boron trihal ides but complexation has been found to occur only at carbon of DME. The initial adduct acts as a Bronsted acid and gives up a proton to free DME in solut ion. A side reaction in the DME-BF, system gives rise to trace amounts of a complex aSSigned as (DME)2BF2+. (DME)2BF2+ is produced in much larger quantities in t he DME-BF3-BC13 and DME-BF,-BBr, systems by reaction of free DME with DME:BF2X (X = Cl, Br). Restricted r otation about the C-N bonds of TMUlBC13 and n1U:BBr3 has been observed at low temperatures. This complements previous work in this system and confirms oxygen donation of TMU to boron trihalides . Restricted rotation at low temperatures also has been observed in DMEboron trihalide systems
Resumo:
Mild hypothermia has a protective effect on brain edema and encephalopathy in both experimental and human acute liver failure. The goals of the present study were to examine the effects of mild hypothermia (35°C) on brain metabolic pathways using combined 1H and 13C-Nuclear Magnetic Resonance (NMR) spectroscopy, a technique which allows the study not only of metabolite concentrations but also their de novo synthesis via cell-specific pathways in the brain. :1H and 13C NMR spectroscopy using [1-13C] glucose was performed on extracts of frontal cortex obtained from groups of rats with acute liver failure induced by hepatic devascularization whose body temperature was maintained either at 37°C (normothermic) or 35°C (hypothermic), and appropriate sham-operated controls. At coma stages of encephalopathy in the normothermic acute liver failure animals, glutamine concentrations in frontal cortex increased 3.5-fold compared to sham-operated controls (P < 0.001). Comparable increases of brain glutamine were observed in hypothermic animals despite the absence of severe encephalopathy (coma). Brain glutamate and aspartate concentrations were respectively decreased to 60.9% ± 7.7% and 42.2% ± 5.9% (P < 0.01) in normothermic animals with acute liver failure compared to control and were restored to normal values by mild hypothermia. Concentrations of lactate and alanine in frontal cortex were increased to 169.2% ± 15.6% and 267.3% ± 34.0% (P < 0.01) respectively in normothermic rats compared to controls. Furthermore, de novo synthesis of lactate and alanine increased to 446.5% ± 48.7% and 707.9% ± 65.7% (P < 0.001), of control respectively, resulting in increased fractional 13C-enrichments in these cytosolic metabolites. Again, these changes of lactate and alanine concentrations were prevented by mild hypothermia. Mild hypothermia (35°C) prevents the encephalopathy and brain edema resulting from hepatic devascularization, selectively normalizes lactate and alanine synthesis from glucose, and prevents the impairment of oxidative metabolism associated with this model of ALF, but has no significant effect on brain glutamine. These findings suggest that a deficit in brain glucose metabolism rather than glutamine accumulation is the major cause of the cerebral complications of acute liver failure.
Resumo:
The performance of the SAOP potential for the calculation of NMR chemical shifts was evaluated. SAOP results show considerable improvement with respect to previous potentials, like VWN or BP86, at least for the carbon, nitrogen, oxygen, and fluorine chemical shifts. Furthermore, a few NMR calculations carried out on third period atoms (S, P, and Cl) improved when using the SAOP potential