948 resultados para Nuclear genome evolution
Resumo:
利用松科植物特殊的遗传体系(叶绿体基因组一父系遗传、线粒体基因组—母系遗传、核基因组一双亲遗传),我们对高山松及其两个亲本种进行了广泛的群体取样,通过线粒体基因nadl、叶绿体基因rbcL和trnL-F基因间区以及低拷贝核基因4CL的序列分析或PCR-RFLP分析,为高山松同倍体杂种起源假说提供了翔实的遗传学证据,同时在个体水平上探讨了高山松不同群体的遗传组成、群体遗传结构、基因交流方向、群体建立过程以及杂种基因组的进化。具体结果如下: 1.细胞质基因组分析 1)线粒体基因nudl分析 本研究对油松、高山松和云南松的19个群体、295个个体的线粒体基因nadl的一个内含子进行了序列分析或PCR-RFLP分析,共检测到3种线粒体DNA单倍型-A、B和C。油松所有的取样群体仅含单倍型A;除BX群体外,所有的云南松群体仅含单倍型B; 10个高山松群体中,5个群体固定单倍型A,4个群体固定单倍型B,1个群体(ZD)分布有A和B两种单倍型。2)叶绿体rbcL基因分析 对同一组群体的rbcL基因进行序列分析或PCR-RFLP分析,共检测到两个变异位点和三种叶绿体单倍型(TT、TC和GC)。TT和GC分别是油松和云南松种特异性叶绿体单倍型,而在高山松群体里则三种单倍型均有分布,而且TC单倍型广泛地分布在7个杂种群体中,该单倍型很可能来源于点突变或第三个已灭绝的亲本。rbcL基因检测到的高山松群体分化系数很高(Gst=0.533)。 3)叶绿体trn L-F区序列分析 叶绿体trnL-F分子标记检测到的不同单倍型的差异主要是由引物“e”下游120碱基处一个多聚T结构的长度变异所致(叶绿体SSR位点)。10个高山松群体中共检测到5种叶绿体单倍型,其中两种主要的单倍型(9T和11T)分别为油松和云南松的种特异性单倍型,其他单倍型均为非典型单倍型。群体遗传结构分析表明:杂种群体表现最高的遗传多样性,而且trnL-F分析得到的高山松群体的分化系数也很高( Gst=0.443)。 总之,对高山松、油松和云南松的同一组群体取样进行的细胞质基因组分析表明:高山松群体分布有油松和云南松种特异性的线粒体和叶绿体单倍型,该细胞质DNA单倍型的地理分布为假说“高山松为油松和云南松的的二倍体杂种”提供了翔实的遗传学证据。油松和云南松在不同的杂种群体中分别做父本和母本,即两亲本在杂交过程中发生了双向基因交流。群体遗传结构分析发现高山松群体表现最高的遗传多样性,而且群体间的分化系数很高。不同的杂种群体在遗传组成上的差异表明他们经历过不同的建立和进化历史。从线粒体和叶绿体单倍型的地理分布可以看出杂种群体的建立曾经历强烈的奠基者效应和回交。青藏高原的隆升对高山松的起源、杂种群体的适应辐射以及保持产生了重要的影响。川西南和滇西北作为青藏高原的东边边界,很可能是当初云南松和油松分布的重叠区及杂交地带,即高山松的起源地。 2.核基因4CL分析 对高山松、油松和云南松的19个群体、32个个体的低拷贝核基因4CL进行了克隆及序列分析,获得的78条序列可分为两种类型(类型A和类型B)。这两种类型明显的差别是类型A相对于类型B在内含子区有- 20bp的缺失。以华山松的3条序列为外类群,对得到的78条序列进行基因谱系分析,发现所有的序列分成明显的两支,分别对应于类型A和类型B,而且每一支均包含三个种的部分序列,表明4CL基因在这三个种分化之前就已发生重复。另一个明显的特点是某个种的一条序列与另一个种的序列比其与同种的其他序列关系更近,可能因基因交流(杂交和渐渗)、非共祖、致同进化和重组等进化事件所致。三种松树中共检测到4CL基因序列的两种类型和六个亚类型,高山松群体中没有发现杂种独特的类型或亚类型。高山松和云南松共享三种序列亚类型以及最多的序列多态性,表明这两个种之间曾存在广泛的基因交流。
Resumo:
The maize genome is replete with chromosomal duplications and repetitive DNA. The duplications resulted from an ancient polyploid event that occurred over 11 million years ago. Based on DNA sequence data, the polyploid event occurred after the divergence between sorghum and maize, and hence the polyploid event explains some of the difference in DNA content between these two species. Genomic rearrangement and diploidization followed the polyploid event. Most of the repetitive DNA in the maize genome is retrotransposable elements, and they comprise 50% of the genome. Retrotransposon multiplication has been relatively recent—within the last 5–6 million years—suggesting that the proliferation of retrotransposons has also contributed to differences in DNA content between sorghum and maize. There are still unanswered questions about repetitive DNA, including the distribution of repetitive DNA throughout the genome, the relative impacts of retrotransposons and chromosomal duplication in plant genome evolution, and the hypothesized correlation of duplication events with transposition. Population genetic processes also affect the evolution of genomes. We discuss how centromeric genes should, in theory, contain less genetic diversity than noncentromeric genes. In addition, studies of diversity in the wild relatives of maize indicate that different genes have different histories and also show that domestication and intensive breeding have had heterogeneous effects on genetic diversity across genes.
Resumo:
Although the evolutionary success of polyploidy in higher plants has been widely recognized, there is virtually no information on how polyploid genomes have evolved after their formation. In this report, we used synthetic polyploids of Brassica as a model system to study genome evolution in the early generations after polyploidization. The initial polyploids we developed were completely homozygous, and thus, no nuclear genome changes were expected in self-fertilized progenies. However, extensive genome change was detected by 89 nuclear DNA clones used as probes. Most genome changes involved loss and/or gain of parental restriction fragments and appearance of novel fragments. Genome changes occurred in each generation from F2 to F5, and the frequency of change was associated with divergence of the diploid parental genomes. Genetic divergence among the derivatives of synthetic polyploids was evident from variation in genome composition and phenotypes. Directional genome changes, possibly influenced by cytoplasmic-nuclear interactions, were observed in one pair of reciprocal synthetics. Our results demonstrate that polyploid species can generate extensive genetic diversity in a short period of time. The occurrence and impact of this process in the evolution of natural polyploids is unknown, but it may have contributed to the success and diversification of many polyploid lineages in both plants and animals.
Resumo:
The complete mitochondrial genome sequence of the Chinese hook snout carp, Opsariichthys bidens, was newly determined using the long and accurate polymerase chain reaction method. The 16,611-nucleotide mitogenome contains 13 protein-coding genes, two rRNA genes (12S, 16S) 22 tRNA genes, and a noncoding control region. We use these data and homologous sequence data from multiple other ostariophysan fishes in a phylogenetic evaluation to test hypothesis pertaining to codon usage pattern of O. bidens mitochondrial protein genes as well as to re-examine the ostariophysan phylogeny. The mitochondrial genome of O. bidens reveals an alternative pattern of vertebrate mitochondrial evolution. For the mitochondrial protein genes of O. bidens, the most frequently used codon generally ends with either A or C, with C preferred over A for most fourfold degenerate codon families; the relative synonymous codon usage of G-ending codons is greatly elevated in all categories. The codon usage pattern of O. bidens mitochondrial protein genes is remarkably different from the general pattern found previously in the relatively closely 9 related zebrafish and most other vertebrate mitochondria. Nucleotide bias at third codon positions is the main cause of codon bias in the mitochondrial protein genes of O. bidens, as it is biased particularly in favor of C over A. Bayesian analysis of 12 concatenated mitochondrial protein sequences for O. bidens and 46 other teleostean taxa supports the monophyly of Cypriniformes and Otophysi and results in a robust estimate of the otophysan phylogeny. (C) 2007 Published by Elsevier B.V.
Resumo:
Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants.
Resumo:
Schistosoma mansoni is responsible for the neglected tropical disease schistosomiasis that affects 210 million people in 76 countries. Here we present analysis of the 363 megabase nuclear genome of the blood fluke. It encodes at least 11,809 genes, with an unusual intron size distribution, and new families of micro-exon genes that undergo frequent alternative splicing. As the first sequenced flatworm, and a representative of the Lophotrochozoa, it offers insights into early events in the evolution of the animals, including the development of a body pattern with bilateral symmetry, and the development of tissues into organs. Our analysis has been informed by the need to find new drug targets. The deficits in lipid metabolism that make schistosomes dependent on the host are revealed, and the identification of membrane receptors, ion channels and more than 300 proteases provide new insights into the biology of the life cycle and new targets. Bioinformatics approaches have identified metabolic chokepoints, and a chemogenomic screen has pinpointed schistosome proteins for which existing drugs may be active. The information generated provides an invaluable resource for the research community to develop much needed new control tools for the treatment and eradication of this important and neglected disease.
Resumo:
Les champignons mycorhiziens arbusculaires (CMA) sont très répandus dans le sol où ils forment des associations symbiotiques avec la majorité des plantes appelées mycorhizes arbusculaires. Le développement des CMA dépend fortement de la plante hôte, de telle sorte qu'ils ne peuvent vivre à l'état saprotrophique, par conséquent ils sont considérés comme des biotrophes obligatoires. Les CMA forment une lignée évolutive basale des champignons et ils appartiennent au phylum Glomeromycota. Leurs mycélia sont formés d’un réseau d’hyphes cénocytiques dans lesquelles les noyaux et les organites cellulaires peuvent se déplacer librement d’un compartiment à l’autre. Les CMA permettent à la plante hôte de bénéficier d'une meilleure nutrition minérale, grâce au réseau d'hyphes extraradiculaires, qui s'étend au-delà de la zone du sol explorée par les racines. Ces hyphes possèdent une grande capacité d'absorption d’éléments nutritifs qui vont être transportés par ceux-ci jusqu’aux racines. De ce fait, les CMA améliorent la croissance des plantes tout en les protégeant des stresses biotiques et abiotiques. Malgré l’importance des CMA, leurs génétique et évolution demeurent peu connues. Leurs études sont ardues à cause de leur mode de vie qui empêche leur culture en absence des plantes hôtes. En plus leur diversité génétique intra-isolat des génomes nucléaires, complique d’avantage ces études, en particulier le développement des marqueurs moléculaires pour des études biologiques, écologiques ainsi que les fonctions des CMA. C’est pour ces raisons que les génomes mitochondriaux offrent des opportunités et alternatives intéressantes pour étudier les CMA. En effet, les génomes mitochondriaux (mt) publiés à date, ne montrent pas de polymorphismes génétique intra-isolats. Cependant, des exceptions peuvent exister. Pour aller de l’avant avec la génomique mitochondriale, nous avons besoin de générer beaucoup de données de séquençages de l’ADN mitochondrial (ADNmt) afin d’étudier les méchanismes évolutifs, la génétique des population, l’écologie des communautés et la fonction des CMA. Dans ce contexte, l’objectif de mon projet de doctorat consiste à: 1) étudier l’évolution des génomes mt en utilisant l’approche de la génomique comparative au niveau des espèces proches, des isolats ainsi que des espèces phylogénétiquement éloignées chez les CMA; 2) étudier l’hérédité génétique des génomes mt au sein des isolats de l’espèce modèle Rhizophagus irregularis par le biais des anastomoses ; 3) étudier l’organisation des ADNmt et les gènes mt pour le développement des marqueurs moléculaires pour des études phylogénétiques. Nous avons utilisé l’approche dite ‘whole genome shotgun’ en pyroséquençage 454 et Illumina HiSeq pour séquencer plusieurs taxons de CMA sélectionnés selon leur importance et leur disponibilité. Les assemblages de novo, le séquençage conventionnel Sanger, l’annotation et la génomique comparative ont été réalisés pour caractériser des ADNmt complets. Nous avons découvert plusieurs mécanismes évolutifs intéressant chez l’espèce Gigaspora rosea dans laquelle le génome mt est complètement remanié en comparaison avec Rhizophagus irregularis isolat DAOM 197198. En plus nous avons mis en évidence que deux gènes cox1 et rns sont fragmentés en deux morceaux. Nous avons démontré que les ARN transcrits les deux fragments de cox1 se relient entre eux par épissage en trans ‘Trans-splicing’ à l’aide de l’ARN du gene nad5 I3 qui met ensemble les deux ARN cox1.1 et cox1.2 en formant un ARN complet et fonctionnel. Nous avons aussi trouvé une organisation de l’ADNmt très particulière chez l’espèce Rhizophagus sp. Isolat DAOM 213198 dont le génome mt est constitué par deux chromosomes circulaires. En plus nous avons trouvé une quantité considérable des séquences apparentées aux plasmides ‘plasmid-related sequences’ chez les Glomeraceae par rapport aux Gigasporaceae, contribuant ainsi à une évolution rapide des ADNmt chez les Glomeromycota. Nous avons aussi séquencé plusieurs isolats de l’espèces R. irregularis et Rhizophagus sp. pour décortiquer leur position phylogénéque et inférer des relations évolutives entre celles-ci. La comparaison génomique mt nous montré l’existence de plusieurs éléments mobiles comme : des cadres de lecture ‘open reading frames (mORFs)’, des séquences courtes inversées ‘short inverted repeats (SIRs)’, et des séquences apparentées aux plasimdes ‘plasmid-related sequences (dpo)’ qui impactent l’ordre des gènes mt et permettent le remaniement chromosomiques des ADNmt. Tous ces divers mécanismes évolutifs observés au niveau des isolats, nous permettent de développer des marqueurs moléculaires spécifiques à chaque isolat ou espèce de CMA. Les données générées dans mon projet de doctorat ont permis d’avancer les connaissances fondamentales des génomes mitochondriaux non seulement chez les Glomeromycètes, mais aussi de chez le règne des Fungi et les eucaryotes en général. Les trousses moléculaires développées dans ce projet peuvent servir à des études de la génétique des populations, des échanges génétiques et l’écologie des CMA ce qui va contribuer à la compréhension du rôle primorial des CMA en agriculture et environnement.
Resumo:
P>Outcrossing Arabidopsis species that diverged from their inbreeding relative Arabidopsis thaliana 5 million yr ago and display a biogeographical pattern of interspecific sympatry vs intraspecific allopatry provides an ideal model for studying impacts of gene introgression and polyploidization on species diversification. Flow cytometry analyses detected ploidy polymorphisms of 2x and 4x in Arabidopsis lyrata ssp. kamchatica of Taiwan. Genomic divergence between species/subspecies was estimated based on 98 randomly chosen nuclear genes. Multilocus analyses revealed a mosaic genome in diploid A. l. kamchatica composed of Arabidopsis halleri-like and A. lyrata-like alleles. Coalescent analyses suggest that the segregation of ancestral polymorphisms alone cannot explain the high inconsistency between gene trees across loci, and that gene introgression via diploid A. l. kamchatica likely distorts the molecular phylogenies of Arabidopsis species. However, not all genes migrated across species freely. Gene ontology analyses suggested that some nonmigrating genes were constrained by natural selection. High levels of estimated ancestral polymorphisms between A. halleri and A. lyrata suggest that gene flow between these species has not completely ceased since their initial isolation. Polymorphism data of extant populations also imply recent gene flow between the species. Our study reveals that interspecific gene flow affects the genome evolution in Arabidopsis.
Resumo:
Horizontal gene transfer (HGT) is known to be a major force in genome evolution. The acquisition of genes from viruses by eukaryotic genomes is a well-studied example of HGT, including rare cases of non-retroviral RNA virus integration. The present study describes the integration of cucumber mosaic virus RNA-1 into soybean genome. After an initial metatranscriptomic analysis of small RNAs derived from soybean, the de novo assembly resulted a 3029-nt contig homologous to RNA-1. The integration of this sequence in the soybean genome was confirmed by DNA deep sequencing. The locus where the integration occurred harbors the full RNA-1 sequence followed by the partial sequence of an endogenous mRNA and another sequence of RNA-1 as an inverted repeat and allowing the formation of a hairpin structure. This region recombined into a retrotransposon located inside an exon of a soybean gene. The nucleotide similarity of the integrated sequence compared to other Cucumber mosaic virus sequences indicates that the integration event occurred recently. We described a rare event of non-retroviral RNA virus integration in soybean that leads to the production of a double-stranded RNA in a similar fashion to virus resistance RNAi plants.
Resumo:
The recent release of the domestic dog genome provides us with an ideal opportunity to investigate dog-specific genomic features. In this study, we performed a systematic analysis of CpG islands (CGIs), which are often considered gene markers, in the dog
DIFFERENT RATES OF MITOCHONDRIAL-DNA SEQUENCE EVOLUTION IN KIRK DIK-DIK (MADOQUA-KIRKII) POPULATIONS
Resumo:
We have investigated evolutionary rates of the mitochondrial genome among individuals of Madoqua kirkii using the relative rate test. Our results demonstrate that individuals of two chromosome races, East African cytotype A and Southwest African cytotype D, evolve about 2.3 times faster than East African cytotype B. Cytogenetic changes, DNA repair efficiency, mutagens, and more likely, hitherto unrecognized factors will account for the rate difference we have observed. Our results suggest additional caution when using molecular clocks in the estimation of divergence time, even within lineages of closely related taxa. Rate heterogeneity in microevolutionary timescales represents a potentially important aspect of basic evolutionary processes and may provide additional insights into factors which affect genome evolution. (C) 1995 Academic Press, Inc.
Resumo:
John Draper, Luis A.J. Mur, Glyn Jenkins, Gadab C. Ghosh-Biswas, Pauline Bablak, Robert Hasterok,and Andrew P.M. Routledge (2001). Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiology, 127 (4), 1539-1555. Sponsorship: BBSRC / Gatsby Foundation RAE2008
Resumo:
Ferns are the only major lineage of vascular plants not represented by a sequenced nuclear genome. This lack of genome sequence information significantly impedes our ability to understand and reconstruct genome evolution not only in ferns, but across all land plants. Azolla and Ceratopteris are ideal and complementary candidates to be the first ferns to have their nuclear genomes sequenced. They differ dramatically in genome size, life history, and habit, and thus represent the immense diversity of extant ferns. Together, this pair of genomes will facilitate myriad large-scale comparative analyses across ferns and all land plants. Here we review the unique biological characteristics of ferns and describe a number of outstanding questions in plant biology that will benefit from the addition of ferns to the set of taxa with sequenced nuclear genomes. We explain why the fern clade is pivotal for understanding genome evolution across land plants, and we provide a rationale for how knowledge of fern genomes will enable progress in research beyond the ferns themselves.
Resumo:
To provide context for the diversification of archosaurs--the group that includes crocodilians, dinosaurs, and birds--we generated draft genomes of three crocodilians: Alligator mississippiensis (the American alligator), Crocodylus porosus (the saltwater crocodile), and Gavialis gangeticus (the Indian gharial). We observed an exceptionally slow rate of genome evolution within crocodilians at all levels, including nucleotide substitutions, indels, transposable element content and movement, gene family evolution, and chromosomal synteny. When placed within the context of related taxa including birds and turtles, this suggests that the common ancestor of all of these taxa also exhibited slow genome evolution and that the comparatively rapid evolution is derived in birds. The data also provided the opportunity to analyze heterozygosity in crocodilians, which indicates a likely reduction in population size for all three taxa through the Pleistocene. Finally, these data combined with newly published bird genomes allowed us to reconstruct the partial genome of the common ancestor of archosaurs, thereby providing a tool to investigate the genetic starting material of crocodilians, birds, and dinosaurs.
Resumo:
Summary: Genome duplications and polyploidization events are thought to have played relevant roles in the early stages of vertebrate evolution, in particular near the time of divergence of the lamprey lineage. Additional genome duplications, specifically in ray-finned fish, may have occurred before the divergence of the teleosts. The role of polyploidization in vertebrate genome evolution is a thriving area of research. Sturgeons (order Acipenseriformes) provide a unique model for the investigation of genome duplication, with existing species possessing 120, 250 or 360 chromosomes. In the present study, data from 240 sturgeon specimens representing 11 species were used for analysis of ploidy levels. Allele numbers were assessed at eleven microsatellite loci. The results provide further evidence for functional diploidy, tetraploidy and hexaploidy in species possessing 120, 250 and 360 chromosomes, respectively. The analysis also uncovered novel evidence for functional hexaploidy in the shortnose sturgeon (Acipenser brevirostrum). In conclusion, the process of functional genome reduction is demonstrated to be an on-going process in this fish lineage. © 2013 Blackwell Verlag GmbH.