259 resultados para Noradrenaline


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is increasing evidence that central noradrenaline (NA) transport mechanisms are implicated in the central nervous system complications of acute liver failure. In order to assess this possibility, binding sites for the high affinity NA transporter ligand [3H]-nisoxetine were measured by quantitative receptor autoradiography in the brains of rats with acute liver failure resulting from hepatic devascularization and in appropriate controls. In vivo microdialysis was used to measure extracellular brain concentrations of NA. Severe encephalopathy resulted in a significant loss of [3H]-nisoxetine sites in frontal cortex and a concomitant increase in extracellular brain concentrations of NA in rats with acute liver failure. A loss of transporter sites was also observed in thalamus of rats with acute liver failure. This loss of NA transporter sites could result from depletion of central NA stores due to a reserpine-like effect of ammonia which is known to accumulate to millimolar concentrations in brain in ischemic liver failure. Impaired NA transport and the consequent increase in synaptic concentrations and increased stimulation of neuronal and astrocytic noradrenergic receptors could be implicated in the pathogenesis of the encephalopathy and brain edema characteristic of acute liver failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to match individual patients to tailored treatments has the potential to greatly improve outcomes for individuals suffering from major depression. In particular, while the vast majority of antidepressant treatments affect either serotonin or noradrenaline or a combination of these two neurotransmitters, it is not known whether there are particular patients or symptom profiles which respond preferentially to the potentiation of serotonin over noradrenaline or vice versa. Experimental medicine models suggest that the primary mode of action of these treatments may be to remediate negative biases in emotional processing. Such models may provide a useful framework for interrogating the specific actions of antidepressants. Here, we therefore review evidence from studies examining the effects of drugs which potentiate serotonin, noradrenaline or a combination of both neurotransmitters on emotional processing. These results suggest that antidepressants targeting serotonin and noradrenaline may have some specific actions on emotion and reward processing which could be used to improve tailoring of treatment or to understand the effects of dual-reuptake inhibition. Specifically, serotonin may be particularly important in alleviating distress symptoms, while noradrenaline may be especially relevant to anhedonia. The data reviewed here also suggest that noradrenergic-based treatments may have earlier effects on emotional memory that those which affect serotonin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High concentrations of the neurotransmitter noradrenaline and the co-transmitter NPY have been reported in discrete regions of the hypothalamus. This study suggests the NPY plays a possible role in the hypothalamus during the pathophysiological condition of ageing possibly through an NPY Y1 receptor. It also provides further evidence for an interaction between NPY and noradrenaline in the central nervous system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Panic disorder can serve as a clinical model for testing whether mental stress can cause heart disease. Potential neural mechanisms of cardiac risk are the sympathetic activation during panic attacks, continuing release of adrenaline as a co-transmitter in the cardiac sympathetic nerves, and impairment of noradrenaline neuronal reuptake, augmenting sympathetic neural respnses.

The phenotype of impaired neuronal reuptake of noradrenaline: an epigenetic mechanism? We suspect that this phenotype, in sensitizing people to heart symptom development, is a cause of panic disorder, and by magnifying the sympathetic neural signal in the heart, underlies increased cardiac risk. No loss of function mutations of the coding region of the norepinephrine transporter (NET) are evident, but we do detect hypermethylation of CpG islands in the NET gene promoter region. Chromatin immunoprecipitation methodology demonstrates binding of the inhibitory transcription factor, MeCP2, to promoter region DNA in panic disorder patients.

Cardiovascular illnesses co-morbid with panic disorder. Panic disorder commonly coexists with essential hypertension and the postural tachycardia syndrome. In both of these cardiovascular disorders the impaired neuronal noradrenaline reuptake phenotype is also present and, as with panic disorder, is associated with NET gene promoter region DNA hypermethylation. An epigenetic ‘co-morbidity’ perhaps underlies the clinical concordance.

Brain neurotransmitters. Using internal jugular venous sampling, in the absence of a panic attack we find normal norepinephrine turnover, but based on measurements of the overflow of the serotonin metabolite, 5HIAA, a marked increase (six to sevenfold) in brain serotonin turnover in patients with panic disorder. This appears to represent the underlying neurotransmitter substrate for the disorder. Whether this brain serotonergic activation is a prime mover, or consequential on other primary causes of panic disorder, including cardiac sensitization by faulty neuronal noradrenaline reuptake leading to cardiac symptoms and the enhanced vigilance which accompanies them, is unclear at present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The renal haemodynamic and glomerular filtration rate (G.F.R.) responses to intravenous and intrarenal infusions of noradrenaline were studied in conscious dogs, either with or without prior blockade of angiotensin II formation with teprotide.

2. Infusion noradrenaline by either route resulted in dose-related rises in plasma renin activity.

3. Pretreatment with teprotide reduced the rise in mean arterial pressure and abolished the rise in G.F.R. seen during intravenous infusions of noradrenaline (0.1, 0.2 and 0.4 microgram/kg . min). Noradrenaline also reduced filtration fraction more after teprotide pretreatment.

4. Renal blood flow rose and renal vascular resistance fell in response to I.V. noradrenaline infusions. This renal vasodilatation was unaffected by pretreatment of the dogs with teprotide, indomethacin or DL-propranolol. However after pentolinium pretreatment, I.V. noradrenaline infusion caused a dose-related renal vasoconstriction.

5. Infusion of noradrenaline into the renal artery (0.02, 0.05 and 0.1 microgram/kg . min) resulted in rises in mean arterial pressure and G.F.R. which were abolished by teprotide pretreatment. Filtration fraction rose when noradrenaline was administered alone but fell when it was infused after teprotide treatment.

6. Thus angiotensin II formed as the result of increased renin release acted to maintain G.F.R. and filtration fraction during noradrenaline infusion. In addition, I.V. noradrenaline infusions in conscious dogs caused reflex vasodilatation of the renal vasculature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study the importance of epigenetic control of the NET gene was demonstrated using mouse and human tissues. Differences in the state of the NET gene were identified between healthy individuals and patients with postural orthostatic tachycardia syndrome (POTS), potentially leading to new treatment possibilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are sex differences in the activation of the hypothalamo-pituitary-adrenal axis in response to stress, but the source of these differences is unknown. The hypothalamo-pituitary-adrenal axis is regulated by corticotropin-releasing hormone and arginine-vasopressin neurones located in the paraventricular nucleus and these, in turn, are regulated by neural systems that include afferent noradrenergic and neuropeptide Y (NPY)-producing neural pathways. We tested the hypothesis that concentrations of noradrenaline and NPY will be elevated in cerebrospinal fluid (CSF) sampled from the third cerebral ventricle in response to stress, and these responses will differ in males and females. We collected concurrent samples of CSF (1 ml) from the third ventricle and blood (5 ml) from the jugular vein from gonadectomised rams (n = 7) and ewes (n = 5) at 10-min intervals for 3 h. This procedure was conducted on a day when no stress was imposed and on a day when audiovisual stress was imposed for 5 min after 1 h of sampling. Following the audiovisual stress, plasma concentrations of cortisol and CSF concentrations of noradrenaline were elevated (p < 0.05), but CSF concentrations of NPY did not change. Adrenaline was not detected in samples of CSF. The rise in plasma cortisol following the stress was greater (p < 0.05) in ewes than in rams, but there were no sex differences in the rise in noradrenaline. Basal concentrations of NPY in the CSF were higher (p < 0.05) in rams than in ewes. We conclude that the sex differences in the stress-induced activity of the hypothalamo-pituitary-adrenal axis in sheep are not likely to be due to differences in the level of noradrenergic and/or NPY input to the hypothalamus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral treatment with cholinergic or adrenergic agonists results in salivation and the possibility of synergy between cholinergic and adrenergic efferent mechanisms in the control of salivation has been proposed. Central injections of the cholinergic agonist pilocarpine also induce salivation, while the effects of central injections of noradrenaline (norepinephrine) are not known. Here (a) the effects of intracerebroventricular (icv) injection of noradrenaline on the salivation induced by icv or intraperitoneal (i.p.) injection of pilocarpine and (b) the receptors involved in the effects of central noradrenaline on pilocarpine-induced salivation were investigated. Male Holtzman rats with a stainless-steel guide cannula implanted into the lateral ventricle were used. Rats were anaesthetized with tribromoethanol (200 mg/kg body weight) and saliva was collected on small, preweighed cotton balls inserted into the animal's mouth. Noradrenaline (40, 80 and 160 nmol/l mul) injected icv reduced the salivary secretion induced by pilocarpine (0.5 mumol/l mul) injected icv. Noradrenaline (80 and 160 nmol/l mul) injected icv also reduced the salivation induced by pilocarpine (4 mumol/kg) injected i.p. Previous treatment with the alpha(2)-adrenergic receptor antagonists RX 821002 (40, 80 and 160 nmol/l mul) or yohimbine (160 and 320 nmol/l mul) abolished the inhibitory effect produced by icv injection of noradrenaline on pilocarpine-induced salivation in rats. Prazosin (alpha(1)-adrenergic receptor antagonist) injected icv did not change the effect of noradrenaline on pilocarpine-induced salivation. Prior icv injection of only RX 821002 (80 or 160 nmol/l mul) or yohimbine (320 nmol/l mul) increased pilocarpine-induced salivation. The results show that (1) contrary to its peripheral effects, noradrenaline acting centrally inhibits cholinergic-induced salivation in rats; (2) central mechanisms involving alpha(2)-adrenergic receptors inhibit pilocarpine-induced salivation. (C) 2002 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of noradrenaline, and mixed ligands to alpha(2)-adrenoceptors (alpha(2)-AR) and imidazoline receptors (IR), injected intracerebroventricularly (i.c.v.), on sodium intake of sodium depleted rats, was tested against idazoxan, a mixed antagonist ligand to alpha(2)-AR and IR. The inhibition of sodium intake induced by noradrenaline (80 nmol) was completely reversed by idazoxan (160 and 320 nmol) injected i.c.v. The inhibition of sodium intake induced by mixed ligands to alpha(2)-AR and IR, UK14,304, guanabenz and moxonidine, was antagonized from 50 to 60% by idazoxan i.c.v. The results demonstrate that noradrenaline, a non-ligand for IR, acts on alpha(2)-AR inhibiting sodium intake. The possibility that either alpha(2)-AR or IR mediate the effect of mixed agonists on sodium intake remains an open question. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The objective was to determine whether nitric oxide participates in stress adaptive responses. Acute stress (AS) decreased endothelium-dependent vasoconstriction to noradrenaline (NA) in rat aorta [control rat (CR) 3.90+/-0.18, n=22; AS 2.76+/-0.20, n=13; P<0.05].2. Chronic stress exposure previous to AS (CS) potentiated this effect [CS 1.93+/-0.19; n=9; P<0.05 related to CR, P<0.05 related to AS].3. Methylene blue and N-G monomethyl-L-arginine, but not indomethaein, restored the decreased aorta reactivity to NA. 4. No reactivity alteration was observed in aorta without endothelium either in both stress conditions or in the presence of inhibitors. These data show that the nitric oxide participates in stress responses. (C) 1998 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effect of losartan (DUP-753) on the dipsogenic responses produced by intracerebroventricular (icv) injection of noradrenaline (40 nmol/mu l) and angiotensin II (ANG II) (2 ng/mu l) in male Holtzman rats weighing 250-300 g. The effect of DUP-753 was also studied in animals submitted to water deprivation for 30 h. After control injections of isotonic saline (0.15 M NaCl, 1 mu l) into the lateral ventricle (LV) the water intake was 0.2 +/- 0.01 ml/h. DUP-753 (50 nmol/mu l) when injected alone into the LV of satiated animals had no significant effect on drinking (0.4 +/- 0.02 ml/h) (N = 8). DUP-753 (50 nmol/mu l) injected into the LV prior to noradrenaline reduced the water intake from 2.4 +/- 0.8 to 0.8 +/- 0.2 ml/h (N = 8). The water intake induced by injection of ANG II and water deprivation was also reduced from 9.2 +/- 1.4 and 12.7 +/- 1.4 ml/h to 0.8 +/- 0.2 and 1.7 +/- 0.3 ml/h (N = 6 and N = 8), respectively. These data indicate a correlation between noradrenergic pathways and angiotensinergic receptors and lead us to conclude that noradrenaline-induced water intake may be due to the release of ANG II by the brain. The finding that water intake was reduced by DUP-753 in water-deprived animals suggests that dehydration releases ANG II, and that AT(1) receptors of the brain play an important role in the regulation of water intake induced by deprivation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We studied the effect of ramipril injected into the third ventricle (3rdV) on the control of water intake induced by injection of noradrenaline into the 3rdV of adult male Holtzman rats (250-300 g) implanted with a chronic stainless steel cannula into the 3rdV. The injection volume was always 1 mu l and was injected over a period of 30-60 sec. Control animals were injected with 0.15 M NaCl. After the injection of isotonic saline (control, 0.15 M NaCl) into the 3rdV, water ingestion was 0.3 +/- 0.1 ml/h. Ramipril (1 mu g/mu l) injected into the 3rdV prior to isotonic saline produced no changes in water ingestion (0.4 +/- 0.2 ml/h). The injection of noradrenaline (40 nmol/mu l) after isotonic saline induced an increase in water intake (3.0 +/- 1.1 ml/h). The prior injection of ramipril decreased this ingestion to 1.8 +/- 0.3 ml/h. These data show that the inhibition of converting enzyme in the brain reduces the water intake induced by catecholaminergic stimulation. We conclude that the brain is able to transform the prodrug ramipril into the active drug ramiprilat.