892 resultados para Nonlinear Programming


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The filter method is a technique for solving nonlinear programming problems. The filter algorithm has two phases in each iteration. The first one reduces a measure of infeasibility, while in the second the objective function value is reduced. In real optimization problems, usually the objective function is not differentiable or its derivatives are unknown. In these cases it becomes essential to use optimization methods where the calculation of the derivatives or the verification of their existence is not necessary: direct search methods or derivative-free methods are examples of such techniques. In this work we present a new direct search method, based on simplex methods, for general constrained optimization that combines the features of simplex and filter methods. This method neither computes nor approximates derivatives, penalty constants or Lagrange multipliers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Search Optimization methods are needed to solve optimization problems where the objective function and/or constraints functions might be non differentiable, non convex or might not be possible to determine its analytical expressions either due to its complexity or its cost (monetary, computational, time,...). Many optimization problems in engineering and other fields have these characteristics, because functions values can result from experimental or simulation processes, can be modelled by functions with complex expressions or by noise functions and it is impossible or very difficult to calculate their derivatives. Direct Search Optimization methods only use function values and do not need any derivatives or approximations of them. In this work we present a Java API that including several methods and algorithms, that do not use derivatives, to solve constrained and unconstrained optimization problems. Traditional API access, by installing it on the developer and/or user computer, and remote API access to it, using Web Services, are also presented. Remote access to the API has the advantage of always allow the access to the latest version of the API. For users that simply want to have a tool to solve Nonlinear Optimization Problems and do not want to integrate these methods in applications, also two applications were developed. One is a standalone Java application and the other a Web-based application, both using the developed API.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we present a new reformulation of the KKT system associated to a variational inequality as a semismooth equation. The reformulation is derived from the concept of differentiable exact penalties for nonlinear programming. The best theoretical results are presented for nonlinear complementarity problems, where simple, verifiable, conditions ensure that the penalty is exact. We close the paper with some preliminary computational tests on the use of a semismooth Newton method to solve the equation derived from the new reformulation. We also compare its performance with the Newton method applied to classical reformulations based on the Fischer-Burmeister function and on the minimum. The new reformulation combines the best features of the classical ones, being as easy to solve as the reformulation that uses the Fischer-Burmeister function while requiring as few Newton steps as the one that is based on the minimum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an efficient approach based on recurrent neural network for solving nonlinear optimization. More specifically, a modified Hopfield network is developed and its internal parameters are computed using the valid subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyze its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The optimal reactive dispatch problem is a nonlinear programming problem containing continuous and discrete control variables. Owing to the difficulty caused by discrete variables, this problem is usually solved assuming all variables as continuous variables, therefore the original discrete variables are rounded off to the closest discrete value. This approach may provide solutions far from optimal or even unfeasible solutions. This paper presents an efficient handling of discrete variables by penalty function so that the problem becomes continuous and differentiable. Simulations with the IEEE test systems were performed showing the efficiency of the proposed approach. © 1969-2012 IEEE.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article deals with a vector optimization problem with cone constraints in a Banach space setting. By making use of a real-valued Lagrangian and the concept of generalized subconvex-like functions, weakly efficient solutions are characterized through saddle point type conditions. The results, jointly with the notion of generalized Hessian (introduced in [Cominetti, R., Correa, R.: A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28, 789–809 (1990)]), are applied to achieve second order necessary and sufficient optimality conditions (without requiring twice differentiability for the objective and constraining functions) for the particular case when the functionals involved are defined on a general Banach space into finite dimensional ones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The modeling technique is simple, useful and practical to calculate optimum nutrient density to maximize profit margins, using nonlinear programming by predictive broiler performance. To demonstrate the influence of the broiler price could interact with nutrient density, the experiment aimed to define the quadratic equations for consumption and weight gain, based on modeling, to be applied to nonlinear programming, according to sex (male and female) in the starter (1 to 21 days), grower (22 to 42 days) and finisher phases (43 to 56 days). The experimental design was a randomized, totaling 6 treatments [energy levels of 2800, 2900, 3000, 3100, 3200 and 3300kcal AME/kg with constant nutrient : AME (Apparent Metabolizable Energy)] with 4 replicates and 10 birds per plot, using the program free download PPFR Excel workbook for feed formulation (http://www.foa.unesp.br/downloads/file_detalhes.asp?CatCod=4&SubCatCod=138&FileCod=1677). Data from this trial confirmed that there was a significant relationship between feed intake and total energy consumption of the diet, in which feed intake was increased or decreased simply to keep the amount of energy, with a constant rate of nutrient : AME. Therefore, the data support that if the essential dietary nutrients are kept in proportion to the energy density of the diet, according to the appropriate requirements (male / female) of broilers, the weight and feed conversion are significantly (P<0.05) favored by increasing the energy density of the diet. Thus, it enables the application of models for maximum profit (nonlinear formulation), to estimate the proportion of weight gain most appropriate according to the price paid by the market.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe finite sets of points, called sentinels, which allow us to decide if isometric copies of polygons, convex or not, intersect. As an example of the applicability of the concept of sentinel, we explain how they can be used to formulate an algorithm based on the optimization of differentiable models to pack polygons in convex sets. Mathematical subject classification: 90C53, 65K05.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning head-dependent reservoirs under competitive environment. We propose a novel method, based on mixed-integer nonlinear programming (MINLP), for optimising power generation efficiency. This method considers hydroelectric power generation as a nonlinear function of water discharge and of the head. The main contribution of this paper is that discharge ramping constraints and start/stop of units are also considered, in order to obtain more realistic and feasible results. The proposed method has been applied successfully to solve two case studies based on Portuguese cascaded hydro systems, providing a higher profit at an acceptable computation time in comparison with classical optimisation methods based on mixed-integer linear programming (MILP).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper proposes a methodology to increase the probability of delivering power to any load point by identifying new investments in distribution energy systems. The proposed methodology is based on statistical failure and repair data of distribution components and it uses a fuzzy-probabilistic modeling for the components outage parameters. The fuzzy membership functions of the outage parameters of each component are based on statistical records. A mixed integer nonlinear programming optimization model is developed in order to identify the adequate investments in distribution energy system components which allow increasing the probability of delivering power to any customer in the distribution system at the minimum possible cost for the system operator. To illustrate the application of the proposed methodology, the paper includes a case study that considers a 180 bus distribution network.